[1] 卿斯汉,蒋建春,马恒太,等.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29.(QING S H, JIANG J C, MA H T, et al. Research on intrusion detection techniques:a survey[J]. Journal of China Institute of Communications, 2004, 25(7):19-29.) [2] 潘志松.基于神经网络的入侵检测研究[D].南京:南京航空航天大学,2003:20-64.(PAN Z S. Research on intrusion detection based on neural network[D]. Nanjing University of Aeronautics and Astronautics, 2003:20-64.) [3] 胡明霞.基于BP神经网络的入侵检测算法[J].计算机工程,2012,38(6):148-150.(HU M X. Intrusion detection algorithm based on BP neural network[J]. Computer Engineering, 2012, 38(6):148-150.) [4] 杨雅辉,姜电波,沈晴霓,等.基于改进的GHSOM的入侵检测研究[J].通信学报,2011,32(1):121-126.(YANG Y H, JIANG D B, SHEN Q N, et al. Research on intrusion detection based on an improved GHSOM[J]. Journal on Communications, 2011, 32(1):121-126.) [5] 杨雅辉,黄海珍,沈晴霓,等.基于增量式GHSOM神经网络模型的入侵检测研究[J].计算机学报,2014,37(5):1216-1224.(YANG Y H, HUANG H Z, SHEN Q N, et al. Research on intrusion detection based on incremental GHSOM[J]. Chinese Journal of Computers, 2014, 37(5):1216-1224.) [6] 毛国君,宗东军.基于多维数据流挖掘技术的入侵检测模型与算法[J].计算机研究与发展,2009,46(4):602-609.(MAO G J, ZONG D J. An intrusion detection model based on mining multi-dimension data streams[J]. Journal of Computer Research and Development, 2009, 46(4):602-609.) [7] 郭春.基于数据挖掘的网络入侵检测关键技术研究[D].北京:北京邮电大学,2014:89-106.(GUO C. Research on key technologies of network intrusion detection based on data mining[D]. Beijing:Beijing University of Posts and Telecommunications, 2014:89-106.) [8] 饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803.(RAO X, DONG C X, YANG S Q. An intrusion detection system based on support vector machine[J]. Journal of Software, 2003, 14(4):798-803.) [9] 罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J].电子学报,2003,31(11):1713-1716.(LUO M, WANG L N, ZHANG H G. An unsupervised clustering-based intrusion detection method[J]. Acta Electronica Sinica, 2003, 31(11):1713-1716.) [10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [11] DONG Y, LI D. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1):145-154. [12] AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning-a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4):13-18. [13] 逯玉婧.基于深度信念网络的入侵检测算法研究[D].石家庄:河北师范大学,2016:26-46.(LU Y J. Research on intrusion detection algorithm based on deep belief network[D]. Shijiazhuang:Hebei Normal University, 2016:26-46.) [14] ALOM M Z, BONTUPALLI V R, TAHA T M. Intrusion detection using deep belief networks[C]//Proceedings of the 2015 National Aerospace and Electronics Conference. Piscataway, NJ:IEEE, 2015:339-344. [15] GAO N, GAO L, HE Y Y, et al. Intrusion detection model based on deep belief nets[J]. Journal of Southeast University (English Edition), 2015, 31(3):339-346. [16] 杨昆朋.基于深度学习的入侵检测[D].北京:北京交通大学,2015:31-47.(YANG K P. Intrusion detection based on deep learning[D]. Beijing:Beijing Jiaotong University, 2015:31-47.) [17] 安琪.基于深度置信网络的入侵检测研究[D].兰州:兰州大学,2016:20-50.(AN Q. Research on intrusion detection based on depth confidence network[D]. Lanzhou:Lanzhou University, 2016:20-50.) [18] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8):1771-800. [19] SAID D, STIRLING L, FEDEROLF P, et al. Data preprocessing for distance-based unsupervised intrusion detection[C]//Proceedings of the 2011 Ninth Annual International Conference on Privacy, Security and Trust. Piscataway, NJ:2011:181-188. [20] SALEM M, BUEHLER U. Mining techniques in network security to enhance intrusion detection systems[J]. International Journal of Network Security & Its Applications, 2012, 4(6):167-172. [21] 白雪.基于DBN的网络流量分类的研究[D].呼和浩特:内蒙古大学,2015:18-30.(BAI X. Research on network traffic classification based on DBN[D]. Huhhot:Inner Mongolia University, 2015:18-30.) [22] DHANABAL L, SHANTHARAJAH S P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6):446-452. [23] HINTON G E. A practical guide to training restricted Boltzmann machines[M]//Neural Networks:Tricks of the Trade, LNCS 7700. Berlin:Springer, 2012:599-619. [24] 张春霞,姬楠楠,王冠伟.受限波尔兹曼机[J].工程数学学报,2015, 32(2):159-173.(ZHANG C X, JI N N, WANG G W, et al. Restricted Boltzmann machine[J]. Chinese Journal of Engineering Mathematics, 2015, 32(2):159-173.) [25] 邱龙金,贺昌政.神经网络稳定性的交叉验证模型[J].计算机工程与应用,2010,46(34):43-45.(QIU J L, HE C Z. Cross validation model for stability of neural networks[J]. Computer Engineering and Applications, 2010, 46(34):43-45.) [26] 范永东.模型选择中的交叉验证方法综述[D].太原:山西大学,2013:19-41.(FAN Y D. A summary of cross-validation in model selection[D]. Taiyuan:Shanxi University, 2013:19-41.) [27] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):389-396. [28] 贺其备.基于支持向量机的入侵检测研究[D].长春:东北师范大学,2013:29-44.(HE Q B. Research on intrusion detection based on support vector machine[D]. Changchun:Northeast Normal University, 2013:29-44.) |