[1] ESPEZUA S, VILLANUEVA E, MACIEL C D, et al. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets[J]. Neurocomputing, 2015, 149(PB):767-776. [2] LAZAR C, TAMINAU J, MEGANCK S, et al. A survey on filter techniques for feature selection in gene expression microarray analysis[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4):1106-1119. [3] TAO H, BAUSCH C, RICHMOND C, et al. Functional genomics:expression analysis of Escherichia coli growing on minimal and rich media[J]. Journal of Bacteriology, 1999, 181(20):6425-6440. [4] KERR M K, MARTIN M, CHURCHILL G A. Analysis of variance for gene expression microarray data[J]. Journal of Computational Biology, 2000, 7(6):819-837. [5] THOMAS J G, OLSON J M, TAPSCOTT S J, et al. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles[J]. Genome Research, 2001, 11(7):1227-1236. [6] EFRON B, TIBSHIRANI R, STOREY J D, et al. Empirical Bayes analysis of a microarray experiment[J]. Journal of the American Statistical Association, 2001, 96(456):1151-1160. [7] LONG A D, MANGALAM H J, CHAN B Y, et al. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework[J]. Journal of Biological Chemistry, 2001, 276(23):19937-19944. [8] BALDI P, LONG A D. A Bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inferences of gene changes[J]. Bioinformatics, 2001, 17(6):509-519. [9] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3):1065-1076. [10] WILINSKI A, OSOWSKI S, SIWEK K. Gene selection for cancer classification through ensemble of methods[C]//Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms. Berlin:Springer, 2009:507-516. [11] STEUER R, KURTHS J, DAUB C O, et al. The mutual information:detecting and evaluating dependencies between variables[J]. Bioinformatics, 2002, 18(Suppl. 2):S231-S240. [12] LIU X, KRISHNAN A, MONDRY A. An entropy-based gene selection method for cancer classification using microarray data[J]. BMC Bioinformatics, 2005, 6(1):1-14. [13] CHUANG L Y, KE C H, CHANG H W, et al. A two-stage feature selection method for gene expression data[J]. Omics:a Journal of Integrative Biology, 2009, 13(2):127-137. [14] GOLUB T R, SLONIM D K, TAMAYO P, et al. Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J]. Brain Research, 1999, 501(2):205-214. [15] 李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330.(LI Y X, LI J G, RUAN X G. Study of informative gene selection for tissue classification based on tumor gene expression profiles[J]. Chinese Journal of Computers, 2006, 29(2):324-330.) [16] VAN'T VEER L J, DAI H, VAN DE VIJVER M J, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871):530-536. [17] PARK P J, PAGANO M, BONETTI M. A nonparametric scoring algorithm for identifying informative genes from microarray data[EB/OL].[2016-12-17]. http://xueshu.baidu.com/s?wd=paperuri%3A%286c6a741e996db71f799147979ac19d70%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdx.doi.org%2F10.1142%2F9789814447362_0006&ie=utf-8&sc_us=5571940567161427371. [18] CHENG Q, ZHOU H, CHENG J. The Fisher-Markov selector:fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data[J]. IEEE Transactions on Pattern Analysis and Machine intelligence, 2011, 33(6):1217-1233. [19] WANG Y, TETKO I V, HALL M A, et al. Gene selection from microarray data for cancer classification-a machine learning approach[J]. Computational Biology & Chemistry, 2005, 29(1):37-46. [20] DING C, PENG H. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of Bioinformatics and Computational Biology, 2005, 3(2):185-205. [21] XING E P, JORDAN M I, KARP R M. Feature selection for high-dimensional genomic microarray data[C]//Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann, 2001:601-608. [22] HIRA Z M, AGILLIES D F. A review of feature selection and feature extraction methods applied on microarray data[J]. Advances in Bioinformatics, 2015, 2015:Article ID 198363. [23] LI L, WEINBERG C R, DARDEN T A, et al. Gene selection for sample classification based on gene expression data:study of sensitivity to choice of parameters of the GA/KNN method[J]. Bioinformatics, 2001, 17(12):1131-1142. [24] CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40(1):16-28. [25] XIA X L, XING H, LIU X. Analyzing kernel matrices for the identification of differentially expressed genes[J]. PLOS ONE, 2013, 8(12):e81683. [26] OSAREH A, SHADGAR B. Machine learning techniques to diagnose breast cancer[C]//Proceedings of the 20105th International Symposium on Health Informatics and Bioinformatics. Piscataway, NJ:IEEE, 2010:114-120. [27] 张靖.面向高维小样本数据的分类特征选择算法研究[D].合肥:合肥工业大学,2014:15,35-52.(ZHANG J. Classification and feature selection on high-dimensional and small-sampling data[D]. Hefei:Hefei University of Technology, 2014:15,35-52.) [28] SUN Y, BABBS C F, DELP E J. A comparison of feature selection methods for the detection of breast cancers in mammograms:adaptive sequential floating search vs. genetic algorithm[C]//Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. Piscataway, NJ:IEEE, 2006:6532-6535. [29] NAKARIYAKUL S, CASASENT D P. An improvement on floating search algorithms for feature subset selection[J]. Pattern Recognition, 2009, 42(9):1932-1940. [30] CHUANG L Y, YANG C H, LI J C, et al. A hybrid BPSO-CGA approach for gene selection and classification of microarray data[J]. Journal of Computational Biology:A Journal of Computational Molecular Cell Biology, 2012, 19(1):68-82. [31] CORDÓN O, DAMAS S, SANTAMARÍA J. Feature-based image registration by means of the CHC evolutionary algorithm[J]. Image & Vision Computing, 2006, 24(5):525-533. [32] KAMYAB S, EFTEKHARI M. Feature selection using multimodal optimization techniques[J]. Neurocomputing, 2016, 171(C):586-597. [33] GUYON I, WESTON J, BARNHILL S, et al. Gene selection for caner classification using support vector machines[J]. Machine Learning, 2002, 46(1):389-422. [34] DING Y, WILKINS D. Improving the performance of SVM-RFE to select genes in microarray data[J]. BMC Bioinformatics, 2006, 7(Suppl 2):S12. [35] MAO Y, PI D, LIU Y, et al. Accelerated recursive feature elimination based on support vector machine for key variable identification[J]. Chinese Journal of Chemical Engineering, 2006, 14(1):65-72. [36] 谢娟英,谢维信.基于特征子集区分度与支持向量机的特征选择算法[J].计算机学报,2014,37(8):1704-1718.(XIE J Y, XIE W X. Several feature selection algorithms based on the discernibility of a feature subset and support vector machines[J]. Chinese Journal of Computers, 2014, 37(8):1704-1718.) [37] 游伟,李树涛,谭明奎.基于SVM-RFE-SFS的基因选择方法[J].中国生物医学工程学报,2010,29(1):93-99.(YOU W, LI S T, TAN M K. Gene selection method based on SVM-RFE-SFS[J]. Chinese Journal of Biomedical Engineering, 2010, 29(1):93-99.) [38] TANG Y, ZHANG Y Q, HUANG Z. FCM-SVM-RFE gene feature selection algorithm for leukemia classification from microarray gene expression data[C]//Proceedings of the 14th IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE, 2005:97-101. [39] 吴红霞,吴悦,刘宗田,等.基于Relief和SVM-RFE的组合式SNP特征选择[J].计算机应用研究,2012,29(6):2074-2077.(WU H X, WU Y, LIU Z T, et al. Combined SNP feature selection based on Relief and SVM-RFE[J]. Application Research of Computers, 2012, 29(6):2074-2077.) [40] 林俊,许露,刘龙.基于SVM-RFE-BPSO算法的特征选择方法[J].小型微型计算机系统,2015,36(8):1865-1868.(LIN J, XU L, LIU L. Feature selection method based on SVM-RFE and particle swarm optimization[J]. Journal of Chinese Computer Systems, 2015, 36(8):1865-1868.) [41] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1):267-288. [42] 刘建伟,崔立鹏,刘泽宇,等.正则化稀疏模型[J].计算机学报,2015, 38(7):1307-1325. (LIU J W, CUI L P,LIU Z Y, et al. Survey on the regularized sparse models[J]. Chinese Journal of Computers. 2015, 38(7):1307-1325.) [43] 刘建伟,崔立鹏,罗雄麟. 结构稀疏模型及其算法研究进展[J].计算机科学,2016,43(S1):1-16.(LIU J W, CUI L P, LUO X L. Research and development on structured sparse models and algorithms[J]. Computer Science, 2016, 43(S1):1-16.) [44] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2):407-451. [45] 张靖,胡学钢,张玉红,等.K-split Lasso:有效的肿瘤特征基因选择方法[J].计算机科学与探索,2012,6(12):1136-1143.(ZHANG J, HU X G, ZHANG Y H, et al. K-split Lasso:an effective feature selection method for tumor gene expression data[J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(12):1136-1143.) [46] 施万锋,胡学钢,俞奎.一种面向高维数据的均分式Lasso特征选择方法[J].计算机工程与应用,2012,48(1):157-161.(SHI W F, HU X G, YU K. K-part Lasso based on feature selection algorithm for high-dimensional data[J]. Computer Engineering and Applications, 2012, 48(1):157-161.) [47] 施万锋,胡学钢,俞奎. 一种面向高维数据的迭代式Lasso特征选择方法[J]. 计算机应用研究,2011,28(12):4463-4466.(SHI W F, HU X G, YU K. Iterative Lasso based on feature selection for high dimensional data[J]. Application Research of Computers, 2011, 28(12):4463-4466.) [48] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2):301-320. [49] LUO S, CHEN Z. Sequential Lasso cum EBIC for feature selection with ultra-high dimensional feature space[J]. Journal of the American Statistical Association, 2014, 109(507):1229-1240. [50] CHEN Z H. Sequential Lasso for feature selection with ultra-high dimensional feature space[EB/OL].[2016-11-25]. http://www.stat.nus.edu.sg/~stachenz/T11-455R1.pdf. [51] MA S, SONG X, HUANG J. Supervised group Lasso with applications to microarray data analysis[J]. BMC Bioinformatics, 2007, 8(1):1-17. [52] LI X, RAO S, WANG Y, et al. Gene mining:a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling[J]. Nucleic Acids Research, 2004, 32(9):2685-2694. [53] DUTKOWSKI J, GAMBIN A. On consensus biomarker selection[J]. BMC Bioinformatics, 2007, 8(Suppl 5):S5. [54] SAEYS Y, ABEEL T, PEER Y V D. Robust feature selection using ensemble feature selection techniques[C]//Proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases, LNCS 5212. Berlin:Springer, 2008:313-325. [55] ABEEL T, HELLEPUTTE T, VAN DE PEER Y, et al. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods[J]. Bioinformatics, 2010, 26(3):392-398. [56] WANG Y, MAKEDON F S, FORD J C, et al. HykGene:a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data[J]. Bioinformatics, 2005, 21(8):1530-1537. [57] AKADI A E, AMINE A, OUARDIGHI A E, et al. A two-stage gene selection scheme utilizing MRMR filter and GA wrapper[J]. Knowledge and Information Systems, 2011, 26(3):487-500. [58] BERMEJO P, DE LA OSSA L, GÁMEZ J A, et al. Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking[J]. Knowledge-Based Systems, 2012, 25(1):35-44. [59] BOLÓN-CANEDO V, SÁNCHEZ-MAROÑO N, ALONSO-BETANZOS A, et al. A review of microarray datasets and applied feature selection methods[J]. Information Sciences:an International Journal, 2014, 282(5):111-135. [60] 姚唐龙.基因表达谱数据挖掘的特征提取方法研究[D].合肥:安徽大学,2015:13-19.(YAO T L. Research on feature extraction method of gene expression profiles data mining[D]. Hefei:Anhui University, 2015:13-19.) |