[1] 潘浩,高枝宝,何小海,等.基于计算机视觉的公交系统人流量检测算法[J].计算机工程,2007,33(11):216-218.(PAN H, GAO Z B, HE X H, et al. Pedestrian flow detection algorithm in public transport system based on computer vision[J]. Computer Engineering, 2007, 33(11):216-218.) [2] 顾德军,伍铁军.一种基于人头特征的人数统计方法研究[J].机械制造与自动化,2010,39(4):134-138.(GU D J, WU T J. Pedestrian count method based on head feature[J]. Machine Building & Automation, 2010, 39(4):134-138.) [3] 张姗姗,景文博,刘学,等.一种基于深度信息的人头检测方法[J].长春理工大学学报(自然科学版),2016,39(2):107-111.(ZHANG S S, JING W B, LIU X, et al. A head detection method based on depth information[J]. Journal of Changchun University of Science and Technology (Natural Science), 2016, 39(2):107-111.) [4] 文嘉俊,徐勇,战荫伟.基于AdaBoost和帧间特征的人数统计[J].中国图象图形学报,2011,16(9):1729-1735.(WEN J J, XU Y, ZHAN Y W. People counting based on AdaBoost and inter-frame features[J]. Journal of Image and Graphics, 2011, 16(9):1729-1735.) [5] LI B, ZHANG J, ZHANG Z, et al. A people counting method based on head detection and tracking[C]//Proceedings of the 2014 International Conference on Smart Computing. Washington, DC:IEEE Computer Society, 2014:136-141. [6] 朴春赫,潘怡霖,赵海,等.基于改进ViBe的多行人检测方法[J].东北大学学报(自然科学版),2016,37(4):481-485.(PAK C H, PAN Y L, ZHAO H, et al. Multi-pedestrian detection approach based on improved ViBe algorithm[J]. Journal of Northeastern University (Natural Science), 2016, 37(4):481-485.) [7] ZHAO L, THORPE C E. Stereo-and neural network-based pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3):148-154. [8] KIM K, CHALIDABHONGSE T H, HARWOOD D, et al. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005, 11(3):172-185. [9] KIM K, CHALIDABHONGSE T H, HARWOOD D, et al. Background modeling and subtraction by codebook construction[C]//Proceedings of the 2004 International Conference on Image Processing. Piscataway, NJ:IEEE, 2004, 5:3061-3064. [10] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2005, 1:886-893. [11] KÉGL B. The return of AdaBoost.MH:multi-class Hamming trees[EB/OL].[2016-12-20]. https://core.ac.uk/download/pdf/24989526.pdf. [12] KELLY A. A 3D state space formulation of a navigation Kalman filter for autonomous vehicles[EB/OL].[2016-12-20]. http://frc.ri.cmu.edu/users/alonzo/pubs/reports/kalman_V2.pdf. [13] POWERS D M W. Evaluation:from precision, recall and F-measure to ROC, informedness, markedness and correlation[J]. Journal of Machine Learning Technologies, 2011, 2(1):37-63. |