[1] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection:a review[J]. ACM Computing Surveys, 2021, 54(2):No. 38. [2] SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:6479-6488. [3] WAN B, FANG Y, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE, 2020:1-6. [4] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly:memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:1705-1714. [5] ABATI D, PORRELLO A, CALDERARA S, et al. Latent space autoregression for novelty detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:481-490. [6] 朱松豪, 赵云斌. 基于半监督生成式对抗网络的异常行为检测[J]. 南京邮电大学学报(自然科学版), 2020, 40(4):50-56. (ZHU S H, ZHAO Y B. Anomaly detection based on semisupervised generative adversarial networks[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2020, 40(4):50-56.) [7] MORAIS R, LE V, TRAN T, et al. Learning regularity in skeleton trajectories for anomaly detection in videos[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:11988-11996. [8] LU Y W, KUMAR K M, NABAVI S S, et al. Future frame prediction using convolutional VRNN for anomaly detection[C]//Proceedings of 16th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway:IEEE, 2019:1-8. [9] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:6536-6545. [10] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:1273-1283. [11] WANG T, QIAO M N, DENG Y J, et al. Abnormal event detection based on analysis of movement information of video sequence[J]. Optik, 2018, 152:50-60. [12] YUAN Y, FENG Y C, LU X Q. Statistical hypothesis detector for abnormal event detection in crowded scenes[J]. IEEE Transactions on Cybernetics, 2017, 47(11):3597-3608. [13] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in Matlab[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2013:2720-2727. [14] KIM J, GRAUMAN K. Observe locally, infer globally:a spacetime MRF for detecting abnormal activities with incremental updates[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2009:2921-2928. [15] MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2010:1975-1981. [16] 胡学敏, 易重辉, 陈钦, 等. 基于运动显著图的人群异常行为检测[J]. 计算机应用, 2018, 38(4):1164-1169.(HU X M, YI C H, CHNE Q, et al. Abnormal crowd behavior detection based motion saliency map[J]. Journal of Computer Applications, 2018, 38(4):1164-1169.) [17] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:14360-14369. [18] LEI Z, DENG F, YANG X D. Spatial temporal balanced generative adversarial autoencoder for anomaly detection[C]//Proceedings of the 2019 International Conference on Image, Video and Signal Processing. New York:ACM, 2019:1-7. [19] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:733-742. [20] LUO W X, LIU W, GAO S H. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE, 2017:439-444. [21] FAN Y X, WEN G J, LI D R, et al. Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder[J]. Computer Vision and Image Understanding, 2020, 195:No. 102920. [22] ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0:evolution of optical flow estimation with deep networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1647-1655. [23] WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11):2740-2755. [24] IONESCU R T, KHAN F S, GEORGESCU M I, et al. Objectcentric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:7834-7843. [25] LUO W X, LIU W, GAO S H. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:341-349. [26] PRAWIRO H, PENG J W, PAN T Y, et al. Abnormal event detection in surveillance videos using two-stream decoder[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo Workshops. Piscataway:IEEE, 2020:1-6. |