[1] YIM H,OH S,KIM W.A study on the verification scheme for electrical circuit analysis of fire hazard analysis in nuclear power plant[J]. Journal of the Korean Society of Safety, 2015, 30(3):114-122. [2] YAMADA M, SHIRATORI S. Smoke sensor using mass controlled layer-by-layer self-assembly of polyelectrolytes films[J]. Sensors and Actuators B:Chemical, 2000, 64(1/2):124-127. [3] KELLER A, RüEGG M, FORSTER M, et al. Open photoacoustic sensor as smoke detector[J]. Sensors and Actuators B:Chemical, 2005, 104(1):1-7. [4] CHEON J, LEE J, LEE I, et al. A single-chip CMOS smoke and temperature sensor for an intelligent fire detector[J]. IEEE Sensors Journal, 2009, 9(8):914-921. [5] YU C, ZHANG Y, FANG J, et al. Video smoke recognition based on optical flow[C]//Proceedings of the 20102nd International Conference on Advanced Computer Control. Piscataway, NJ:IEEE, 2010:16-21. [6] WANG Y. Smoke recognition based on machine vision[C]//Proceedings of the 2016 International Symposium on Computer, Consumer and Control. Washington, DC:IEEE Computer Society, 2016:668-671. [7] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报, 2015, 26(1):26-39.(ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39.) [8] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2016-11-20]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf. [10] LI J, CHENG J H, SHI J Y, et al. Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement[M]//Advances in Computer Science and Information Engineering. Berlin:Springer, 2012:553-558. [11] CUN Y L, JACKEL L D, BOSER B, et al. Handwritten digit recognition:applications of neural network chips and automatic learning[J]. IEEE Communications Magazine, 1989, 27(11):41-46. [12] BOUVRIE J. Notes on convolutional neural networks[EB/OL].[2016-11-20]. http://cogprints.org/5869/1/cnn_tutorial.pdf. [13] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [14] 饶裕平,柴红玲.林火视频监控中烟识别方法概述[J]. 林业调查规划, 2009,34(1):59-62.(RAO Y P, CHAI H L. A general introduction to a method for smoke recognition in vision monitoring of forest fire[J]. Forest Inventory and Planning, 2009, 34(1):59-62.) [15] SAHINER B, CHAN H P, PETRICK N, et al. Classification of mass and normal breast tissue:a convolution neural network classifier with spatial domain and texture images[J]. IEEE Transactions on Medical Imaging, 1996, 15(5):598-610. [16] HUANG Y, TIAN S, SUN X, et al. Forest fire smoke recognition based on gray bit plane technology[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2013, 6(6):309-320. [17] DAI W, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning. New York:ACM, 2007:193-200. [18] YANG Q, CHEN Y, XUE G R, et al. Heterogeneous transfer learning for image clustering via the social Web[C]//Proceedings of the 47th Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudsburg, PA:Association for Computational Linguistics, 2009:1-9. [19] XIE M, JEAN N, BURKE M, et al. Transfer learning from deep features for remote sensing and poverty mapping[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2016:3929-3935. [20] SONOYAMA S, TAMAKI T, HIRAKAWA T, et al. Transfer learning for endoscopic image classification[EB/OL].[2016-11-20]. http://www.researchgate.net/profile/Tetsushi_Koide/publication/306474619_Transfer_Learning_for_Endoscopic_Image_Classification/links/587af87308ae4445c0630cc7.pdf. |