[1] SHAN H, ZHANG J, KRUGER U. Learning linear representation of sparse partitioning trees based on unsupervised kernel dimension reduction[J]. IEEE Transaction on Cybernetics, 2016, 46(12):3427-3438. [2] VLASSIS N, MOTOMURA Y, KROSE B. Supervised dimension reduction of intrinsically low-dimensional data[J]. Neural Computation, 2014, 14(1):191-215. [3] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791. [4] HAN H, LIU S J, GAN L. Non-negativity and dependence constrained sparse coding for image classification[J]. Journal of Visual Communication and Image Representation, 2015, 26:247-254. [5] WEN J H, TIAN Z, LIU X Z, et al. Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification[J]. IEEE Journal of Selected Topic in Applied Earth Observations and Remote Sensing, 2013, 6(2):759-768. [6] POMPILI F, GILLIS N, ABSIL P A, et al. Two algorithms for orthogonal nonnegative matrix factorization with application to clustering[J]. Neurocomputing, 2014, 141(2):15-25. [7] KOTSIA I, ZAFEIRIOU S, PITAS I. A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3):588-595. [8] ZDUNEK R, PHAN A H, CICHOCKI A. Image classification with nonnegative matrix factorization based on spectral projected gradient[J]. Artificial Neural Networks, 2015, 4:31-50. [9] JI Z, PANG Y, LI X. Relevance preserving projection and ranking based on one-class classification for Web image[J]. IEEE Transactions on Image Processing, 2015, 24(11):4137-4147. [10] 汪金涛,曹玉东,孙福明.稀疏约束图正则非负矩阵分解的增量学习算法[J].计算机应用,2017,37(4):1071-1074.(WANG J T, CAO Y D, SUN F M. Incremental learning algorithm based on graph regularized non-negative matrix factorization with sparseness constraints[J]. Journal of Computer Applications, 2017, 37(4):1071-1074.) [11] JIA X, SUN F M, LI H J, et al. Image multi-label annotation based on supervised nonnegative matrix factorization with new matching measurement[J]. Neurocomputing, 2017, 219(C):518-525. [12] LIU H, WU Z, CAI D, et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(7):1299-1311. [13] CAI D, HE X, HAN J, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(8):1548-1560. [14] LIU Q. Kernel local sparse representation based classifier[J]. Neural Processing Letters, 2016, 60(1):1684-1695. [15] YIN Y L, LIU L L, SUN X W. SDUMLA-HMT:a multimodal biometric database[C]//Proceedings of the 6th Chinese Conference on Biometric Recognition. Beijing:[s.n.], 2011:260-268. [16] CHUA T S, TANG J, HONG R, et al. NUSWIDE:a real-world Web image database from National University of Singapore[C]//Proceedings of the 2009 ACM International Conference on Image and Video Retrieval. New York:ACM, 2009:48. [17] 苑玮琦,王爇,孙书会.基于2DFLD的手背静脉识别算法[J].计算机应用,2010,30(3):646-649.(YUAN W Q, WANG R, SUN S H. Palm-dorsa vein recognition based on two-dimensional Fisher linear discriminant[J]. Journal of Computer Applications, 2010, 30(3):646-649.) [18] 胡学考,孙福明,李豪杰.基于稀疏约束的半监督非负矩阵分解算法[J].计算机科学,2015,42(7):280-284.(HU X K, SUN F M, LI H J. Constrained nonnegative matrix factorization with sparseness for image representation[J]. Computer Science, 2015, 42(7):280-284.) |