[1] 王鑫,刘方爱.改进的多数据流协同频繁项集挖掘算法[J].计算机应用,2016,36(7):1988-1992.(WANG X, LIU F A. Improved algorithm for mining collaborative frequent itemsets in multiple data streams[J]. Journal of Computer Applications, 2016, 36(7):1988-1992.). [2] 宋健,许国艳,夭荣朋.基于差分隐私的数据匿名化隐私保护方法[J].计算机应用,2016,36,(10):2753-2757.(SONG J, XU G Y, YAO R P. Anonymized data privacy protection method based on differential privacy[J]. Journal of Computer Applications, 2016, 36(10):2753-2757.) [3] 冯登国,张敏,李昊.大数据安全与隐私保护[J].计算机学报,2014,37(1):246-255.(FENG D G, ZHANG M, LI H. Big data security and privacy protection[J]. Chinese Journal of Computers, 2014, 37(1):246-255.) [4] SHI H Y, JIANG C, DAI W R, et al. Secure Multi-Party Computation Grid Logistic Regression (SMAC-GLORE)[J]. BMC Medical Informatics and Decision Making, 2016, 16(3):89. [5] CHANG X Y, DENG D L, YUAN X X, et al. Experimental realization of an entanglement access network and secure multi-party computation[J]. Scientific Reports, 2016, 6:article no. 29453. [6] BATMAZ Z, POLAT H. Randomization-based privacy-preserving frameworks for collaborative filtering[J]. Procedia Computer Science, 2016, 96:33-42. [7] 方炜炜,谢伟,黄宏博,等.基于隐私保护的序列模式挖掘[J].计算机科学,2016,43(12):195-199.(FANG W W, XIE W, HUANG H B, et al. Sequential pattern mining based on privacy preserving[J]. Computer Science, 2016, 43(12):195-199.) [8] 张鹏,童云海,唐世渭,等.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774.(ZHANG P, TONG Y H, TANG S W, et al. An effective method for privacy preserving association rule mining[J]. Journal of Software, 2006, 17(8):1764-1774.) [9] 顾铖,朱保平,张金康.一种改进的隐私保护关联规则挖掘算法[J].南京航空航天大学学报,2015,47(1):119-124.(GU C, ZHU B P, ZHANG J K. Improved algorithm of privacy preserving association rule mining[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1):119-124.) [10] 陈辉.一种基于位图计算并行挖掘大数据频繁模式算法[J].小型微型计算机系统,2014,35(7):1599-1603.(CHEN H. Parallel mining frequent patterns in big data based on bitmap computation[J]. Journal of Chinese Computer Systems, 2014, 35(7):1599-1603.) [11] 肖晗,黄诚.基于量化关联规则的敏感性分析[J].计算机应用,2017,37(S1):255-257.(XIAO H, HUANG C. Analysis of sensitivity based on quantitative association rules[J]. Journal of Computer Applications, 2017, 37(S1):255-257.) [12] CHEUNG D W, HAN J W, NG V T, et al. Maintenance of discovered association rules in large databases:an incremental updating technique[C]//Proceedings of the 12th International Conference on Data Engineering. Piscataway, NJ:IEEE, 1996:106-114. |