[1] JOHANNES F M. Partitioning of VLSI circuits and systems[C]//DAC'96:Proceedings of the 33rd Annual Design Automation Conference. New York:ACM, 1996:83-87. [2] MEYERHENKE H, SANDERS P, SCHULZ C. Parallel graph partitioning for complex networks[C]//Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium. Piscataway, NJ:IEEE, 2015:1055-1064. [3] KARYPIS G, KUMAR V. Parallel multilevel k-way partitioning scheme for irregular graphs[J]. Journal of Parallel & Distributed Computing, 1999, 41(2):278-300. [4] HENDRICKSON B, LELAND R. An improved spectral graph partitioning algorithm for mapping parallel computations[J]. SIAM Journal on Scientific Computing, 1995, 16(2):452-469. [5] VAQUERO L, CUADRADO F, LOGOTHETIS D, et al. Adaptive partitioning for large-scale dynamic graphs[C]//ICDCS 2014:Proceedings of the 2014 IEEE 34th International Conference on Distributed Computing Systems. Piscataway, NJ:IEEE, 2014:144-153. [6] HUANG J, ABADI D J. Leopard:lightweight edge-oriented partitioning and replication for dynamic graphs[J]. Proceedings of the VLDB Endowment, 2016, 9(7):540-551. [7] MAYER C, TARIQ M A, LI C, et al. GrapH:heterogeneity-aware graph computation with adaptive partitioning[C]//ICDCS 2016:Proceedings of the 36th IEEE International Conference on Distributed Computing Systems. Piscataway, NJ:IEEE, 2016:118-128. [8] GAREY M R, JOHNSON D S, STOCKMEYER L. Some simplified NP-complete graph problems[J]. Theoretical Computer Science, 1976, 1(3):237-267. [9] 郑丽丽.图划分算法综述[J].科技信息,2014(4):145-145.(ZHEN L L. A survey of graph partitioning algorithms[J]. Science and Technology Information, 2014(4):145-145.) [10] BARNARD S T, SIMON H D. Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems[J]. Concurrency and Computation Practice and Experience, 2010, 6(2):101-117. [11] KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs[J]. Bell System Technical Journal, 1970, 49(2):291-307. [12] FIDUCCIA C M, MATTHEYSES R M. A linear-time heuristic for improving network partitions[C]//25 years of DAC Papers on Twenty-Five Years of Electronic Design Automation. New York:ACM, 1988:241-247. [13] FARSHBAF M, FEIZI-DERAKHSHI M R. Multi-objective optimization of graph partitioning using genetic algorithms[C]//Proceedings of the 3rd International Conference on Advanced Engineering Computing and Applications in Sciences. Washington, DC:IEEE Computer Society, 2009:1-6. [14] BOULIF M. Genetic algorithm encoding representations for graph partitioning problems[C]//Proceedings of the 2010 International Conference on Machine and Web Intelligence. Piscataway, NJ:IEEE, 2010:288-291. [15] ROLLAND E, PIRKUL H, GLOVER F. Tabu search for graph partitioning[J]. Annals of Operations Research, 1996, 63(2):209-232. [16] AARTS E, KORST J, MICHIELS W. Simulated annealing[J]. Metaheuristic Procedures for Training Neural Networks, 2007, 36(3):187-210. [17] 翟明清.图的结构参数与特征值[D].上海:华东师范大学,2010:1-5.(ZHAI M Q. Structure variables and eigenvalues of graphs[D]. Shanghai:East China Normal University, 2010:1-5.) [18] FALLAT S M, KIRKLAND S, PATI S. On graphs with algebraic connectivity equal to minimum edge density[J]. Linear Algebra & Its Applications, 2003, 373:31-50. [19] NIKIFOROV V. Note:Eigenvalue problems of Nordhaus-Gaddum type[J]. Discrete Mathematics, 2014, 307(6):774-780. [20] LIU H, LU M, TIAN F. On the spectral radius of unicyclic graphs with fixed diameter[J]. Linear Algebra & Its Applications, 2007, 420(2/3):449-457. [21] KHARAGHANI H, TAYFEH-REZAIE B. On the energy of (0,1)-matrices[J]. Linear Algebra & Its Applications, 2008, 429(8):2046-2051. |