[1] 孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. (MENG X F, CI X. Big data management:concepts, techniques and challenges[J]. Journal of Computer Research and Development, 2013, 50(1):146-169.) [2] CHEN C L P, ZHANG C Y. Data-intensive applications, challenges, techniques and technologies:a survey on big data[J]. Information Sciences, 2014, 275(11):314-347. [3] TOSHNIWAL A, TANEJA S, SHUKLA A, et al. Storm@Twitter[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2014:147-156. [4] Apache. Apache Storm[EB/OL]. (2017-08-01)[2017-08-10]. http://storm.apache.org. [5] 孙大为,张广艳,郑纬民.大数据流式计算:关键技术及系统实例[J].软件学报,2014,25(4):839-862. (SUN D W, ZHANG G Y, ZHENG W M. Big data stream computing:technologies and instances[J]. Journal of Software, 2014, 25(4):839-862.) [6] RANJAN R. Streaming big data processing in datacenter clouds[J]. IEEE Cloud Computing, 2014, 1(1):78-83. [7] 王铭坤,袁少光,朱永利,等.基于Storm的海量数据实时聚类[J].计算机应用,2014,34(11):3078-3081. (WANG M K, YUAN S G, ZHU Y L, et al. Real-time clustering for massive data using Storm[J]. Journal of Computer Applications,2014,34(11):3078-3081.) [8] 乔通,赵卓峰,丁维龙.面向套牌甄别的流式计算系统[J].计算机应用,2017,37(1):153-158. (QIAO T, ZHAO Z F, DING W L. Stream computing system for monitoring copy plate vehicles[J]. Journal of Computer Applications, 2017, 37(1):153-158.) [9] TA V D, LIU C M, NKABINDE G W. Big data stream computing in healthcare real-time analytics[C]//Proceedings of 2016 IEEE International Conference on Cloud Computing and Big Data Analysis. Piscataway, NJ:IEEE, 2016:37-42. [10] PENG B Y, HOSSEINI M, HONG Z H, et al. R-Storm:resource-aware scheduling in Storm[C]//Proceedings of the 16th Annual Middleware Conference. New York:ACM, 2015:149-161. [11] 刘月超,于炯,鲁亮.Storm环境下一种改进的任务调度策略[J].新疆大学学报(自然科学版),2017,34(1):90-95. (LIU Y C, YU J, LU L. An improved task schedule strategy in Storm environment[J]. Journal of Xinjiang University (Natural Science Edition), 2017, 34(1):90-95.) [12] XU J L, CHEN Z H, TANG J, et al. T-Storm:traffic-aware online scheduling in Storm[C]//Proceedings of the 34th IEEE International Conference on Distributed Computing Systems. Piscataway, NJ:IEEE, 2014:535-544. [13] 郑丽丽,武继刚,陈勇,等.带权图的均衡k划分[J].计算机研究与发展,2015,52(3):769-776. (ZHENG L L, WU J G, CHEN Y, et al. Balanced k-way partitioning for weighted graphs[J]. Journal of Computer Research and Development, 2015, 52(3):769-776.) [14] SUN D W, ZHANG G Y, YANG S L, et al. Re-Stream:real-time and energy-efficient resource scheduling in big data stream computing environments[J]. Information Sciences, 2015, 319:92-112. [15] GHADERI J, SHAKKOTTAI S, SRIKANT R. Scheduling storms and streams in the cloud[J]. ACM SIGMETRICS Performance Evaluation Review, 2015, 43(1):439-440. [16] LIU Y, SHI X, JIN H. Runtime-aware adaptive scheduling in stream processing[J]. Concurrency and Computation:Practice and Experience, 2016, 28(14):3830-3843. [17] CARDELLINI V, GRASSI V, LO PRESTI F, et al. Distributed QoS-aware scheduling in Storm[C]//Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems. New York:ACM, 2015:344-347. [18] 熊安萍,王贤稳,邹洋.基于Storm拓扑结构热边的调度算法[J].计算机工程,2017,43(1):37-42.(XIONG A P, WANG X W, ZOU Y. Scheduling algorithm based on Storm topology hot-edge[J]. Computer Engineering, 2017, 43(1):37-42.) [19] ESKANDARI L, HUANG Z, EYERS D. P-Scheduler:adaptive hierarchical scheduling in Apache Storm[C]//Proceedings of the Australasian Computer Science Week Multiconference. New York:ACM, 2016:Article No. 26. [20] ANIELLO L, BALDONI R, QUERZONI L. Adaptive online scheduling in Storm[C]//Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems. New York:ACM, 2013:207-218. [21] MARZ N. Public stormprocessor/storm-benchmark[EB/OL]. (2012-08-20)[2017-08-10]. https://github.com/stormprocessor/storm-Benchmark. [22] ZHANG M. Intel-hadoop/storm-benchmark forked from manuzhang/storm-benchmark[EB/OL]. (2015-11-02)[2017-08-10]. https://github.com/intel-hadoop/storm-benchmark. |