| 1 | WEI X L, HUANG X L, LU T, et al. An improved method based on deep reinforcement learning for target searching[C]// Proceedings of the 4th International Conference on Robotics and Automation Engineering. Piscataway: IEEE, 2019: 130-134.  10.1109/icrae48301.2019.9043821 | 
																													
																						| 2 | BIRCHER A, KAMEL M, ALEXIS K, et al. Receding horizon “next-best-view” planner for 3D exploration[C]// Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2016: 1462-1468.  10.1109/icra.2016.7487281 | 
																													
																						| 3 | HILDMANN H, KOVACS E. Review: using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for disaster response, civil security and public safety[J]. Drones, 2019, 3(3): No.59.  10.3390/drones3030059 | 
																													
																						| 4 | SAMPEDRO C, RODRIGUEZ-RAMOS A, BAVLE H, et al. A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques[J]. Journal of Intelligent and Robotic Systems, 2019, 95(2): 601-627.  10.1007/s10846-018-0898-1 | 
																													
																						| 5 | FARINHA A, ZUFFEREY R, ZHENG P, et al. Unmanned aerial sensor placement for cluttered environments[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6623-6630.  10.1109/lra.2020.3015459 | 
																													
																						| 6 | XU J W, OTA K, DONG M X. Aerial edge computing: flying attitude-aware collaboration for multi-UAV[J]. IEEE Transactions on Mobile Computing, 2022(Early Access): 1-1.  10.1109/tmc.2022.3179399 | 
																													
																						| 7 | ZHEN Z Y, WEN L D, WANG B L, et al. Improved contract network protocol algorithm based cooperative target allocation of heterogeneous UAV swarm[J]. Aerospace Science and Technology, 2021, 119: No.107054.  10.1016/j.ast.2021.107054 | 
																													
																						| 8 | FAIGL J, VÁŇA P, DECKEROVÁ J. Fast heuristics for the 3-D multi-goal path planning based on the generalized traveling salesman problem with neighborhoods[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2439-2446.  10.1109/lra.2019.2900507 | 
																													
																						| 9 | SHI K X, ZHANG H W, ZHANG Z Z, et al. The algorithm of terminal logistics path planning based on TSP problem[C]// Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering. Piscataway: IEEE, 2020: 130-133.  10.1109/icaice51518.2020.00031 | 
																													
																						| 10 | GAVISH B, PIRKUL H. Efficient algorithms for solving multi constraint zero-one knapsack problems to optimality[J]. Mathematical Programming, 1985, 31(1): 78-105.  10.1007/bf02591863 | 
																													
																						| 11 | JIANG C, WAN Z P, PENG Z H. A new efficient hybrid algorithm for large scale multiple traveling salesman problems[J]. Expert Systems with Applications, 2020, 139: No.112867.  10.1016/j.eswa.2019.112867 | 
																													
																						| 12 | ZHOU H L, SONG M L, PEDRYCZ W. A comparative study of improved GA and PSO in solving multiple traveling salesmen problem[J]. Applied Soft Computing, 2018, 64: 564-580.  10.1016/j.asoc.2017.12.031 | 
																													
																						| 13 | 胡士娟,鲁海燕,向蕾,等. 求解MMTSP的模糊聚类单亲遗传算法[J].计算机科学, 2020, 47(6):219-224.  10.11896/jsjkx.190500137 | 
																													
																						|  | HU S J, LU H Y, XIANG L, et al. Fuzzy C-means clustering based partheno-genetic algorithm for solving MMTSP[J]. Computer Science, 2020, 47(6): 219-224.  10.11896/jsjkx.190500137 | 
																													
																						| 14 | 张瑞鹏,冯彦翔,杨宜康. 多无人机协同任务分配混合粒子群算法[J]. 航空学报, 2022, 43(12):418-433.  10.7527/S1000-6893.2021.26011 | 
																													
																						|  | ZHNAG R P, FENG Y X, YANG Y K. Hybrid particle swarm algorithm for multi-UAV cooperative task allocation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12):418-433.  10.7527/S1000-6893.2021.26011 | 
																													
																						| 15 | KOHONEN T. Self-Organization and Associative Memory, SSINF 8 [M]. 3rd ed. Berlin: Springer, 1988: 37.  10.1007/978-3-662-00784-6 | 
																													
																						| 16 | KOHONEN T, KASKI S, LAGUS K, et al. Self organization of a massive document collection[J]. IEEE Transactions on Neural Networks, 2000, 11(3): 574-585.  10.1109/72.846729 | 
																													
																						| 17 | ZHU D Q, ZHOU B, YANG S X. A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(2):333-342.  10.1109/tiv.2020.3029369 | 
																													
																						| 18 | LI X, ZHU D Q. An adaptive som neural network method for distributed formation control of a group of AUVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8260-8270. | 
																													
																						| 19 | SUN B, ZHU D Q, TIAN C, et al. Complete coverage autonomous underwater vehicles path planning based on glasius bio-inspired neural network algorithm for discrete and centralized programming[J]. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11(1): 73-84.  10.1109/tcds.2018.2810235 | 
																													
																						| 20 | ZHU D Q, CAO X, SUN B, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(2): 304-313.  10.1109/tcds.2017.2727678 | 
																													
																						| 21 | ZHU A M, YANG S X. A neural network approach to dynamic task assignment of multirobots[J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1278-1287.  10.1109/tnn.2006.875994 | 
																													
																						| 22 | YI X, ZHU A M, YANG S X, et al. A bio-inspired approach to task assignment of swarm robots in 3-D dynamic environments[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 974-983.  10.1109/tcyb.2016.2535153 | 
																													
																						| 23 | YAN M, YUAN H M, XU J, et al. Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021: No.94.  10.1186/s13634-021-00804-9 | 
																													
																						| 24 | Optimization Gurobi, LLC. Gurobi optimizer reference manual[EB/OL]. [2022-04-06].. | 
																													
																						| 25 | Google. OR-Tools Python reference: algorithms[EB/OL]. [2022-04-06].. | 
																													
																						| 26 | REINELT G. TSPLIB - a traveling salesman problem library[J]. ORSA Journal on Computing, 1991, 3(4): 376-384.  10.1287/ijoc.3.4.376 | 
																													
																						| 27 | VENKATESH P, SINGH A. Two metaheuristic approaches for the multiple traveling salesperson problem[J]. Applied Soft Computing, 2015, 26: 74-89.  10.1016/j.asoc.2014.09.029 |