[1] YUAN X, HAO X, CHEN H, et al. Robust traffic sign recognition based on color global and local oriented edge magnitude patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4):1466-1477. [2] ZAKLOUTA F, STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous Systems, 2014, 62(1):16-24. [3] SALTI S, PETRELLI A, TOMBARI F, et al. Traffic sign detection via interest region extraction[J]. Pattern Recognition, 2015, 48(4):1039-1049. [4] BRUNO M G S, MOURA J M F. Multiframe detector/tracker:optimal performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3):925-945. [5] HAN J, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2168-2172. [6] COLLATZ L. An image interpolation-based approach to the detection of small moving target[J]. Energy Procedia, 2011, 13(1):2152-2157. [7] 张阿珍,刘政林,邹雪城,等.基于双三次插值算法的图像缩放引擎设计[J].微电子学与计算机,2007,24(1):49-51.(ZHANG A Z, LIU Z L, ZOU X C, et al. Design of image scaling engine based bicubic interpolation algorithm[J]. Microelectronics and Computer, 2007, 24(1):49-51.) [8] TAKEKI A, TRINH T T, YOSHIHASHI R, et al. Combining deep features for object detection at various scales:finding small birds in landscape images[J]. IPSJ Transactions on Computer Vision and Applications, 2016, 8(1):5-13. [9] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2009:248-255. [10] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:3431-3440. [11] YANG F, CHOI W, LIN Y. Exploit all the layers:fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:2129-2137. [12] CHOI W, YANG F, LIN Y. Cascaded neural network with scale dependent pooling for object detection:U.S. Patent Application 15/343,017[P]. 2016-11-03. [13] HUANG Z, YU Y, GU J, et al. An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2017, 47(4):920-933. [14] LIU H, LIU Y, SUN F. Traffic sign recognition using group sparse coding[J]. Information Sciences, 2014, 266(10):75-89. [15] RUTA A, LI Y, LIU X. Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1):416-430. [16] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Berlin:Springer, 2014:818-833. [17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 9(4):1409-1556. [18] ZEILER M D. ADADELTA:an adaptive learning rate method[J]. Computer Science, 2012, 11(2):1212-1221. [19] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. [20] CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32:333-338. [21] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer:benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32:323-332. [22] AGHDAM H H, HERAVI E J, PUIG D. Toward an optimal convolutional neural network for traffic sign recognition[C]//Proceedings of the 8th International Conference on Machine Vision. Bellingham, WA:SPIE, 2015, 9875:98750K. [23] XIE K, GE S, YE Q, et al. Traffic sign recognition based on attribute-refinement cascaded convolutional neural networks[C]//Proceedings of the 17th Pacific-Rim Conference on Multimedia, LNCS 9916. Berlin:Springer, 2016:201-210. [24] LUO H, YANG Y, TONG B, et al. Traffic sign recognition using a multi-task convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, PP(99):1-12. |