[1] MEI Q, LING X, WONDRA M, et al. Topic sentiment mixture:modeling facets and opinions in weblogs[C]//Proceedings of the 16th International Conference on World Wide Web. New York:ACM, 2007:171-180. [2] LIN C, HE Y. Joint sentiment/topic model for sentiment analysis[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York:ACM, 2009:375-384. [3] WIJNHOVEN F, BLOEMEN O. External validity of sentiment mining reports:Can current methods identify demographic biases, event biases, and manipulation of reviews?[J]. Decision Support Systems, 2014, 59(1):262-273. [4] 吴江, 唐常杰, 李太勇,等. 基于语义规则的Web金融文本情感分析[J].计算机应用, 2014,34(2):481-485. (WU J, TANG C J, LI T Y, et al. Sentiment analysis on Web financial text based on semantic rules[J]. Journal of Computer Applications, 2014,34(2):481-485.) [5] ZHANG C, ZENG D, LI J, et al. Sentiment analysis of Chinese documents:From sentence to document level[J]. Journal of the Association for Information Science and Technology, 2009, 60(12):2474-2487. [6] SU Z, XU H, ZHANG D, et al. Chinese sentiment classification using a neural network tool-Word2vec[C]//Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems. Piscataway, NJ:IEEE, 2014:1-6. [7] RAMADHANI R A, INDRIANI F, NUGRAHADI D T. Comparison of naive Bayes smoothing methods for Twitter sentiment analysis[C]//Proceedings of the 2017 International Conference on Advanced Computer Science and Information Systems. Piscataway, NJ:IEEE, 2017:287-292. [8] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1):993-1022. [9] HOFMANN T. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 1999:50-57. [10] BRODY S, ELHADAD N. An unsupervised aspect-sentiment model for online reviews[C]//Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2010:804-812. [11] HAI Z, CONG G, CHANG K, et al. Analyzing sentiments in one go:a supervised joint topic modeling approach[J]. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(6):1172-1185. [12] ZHANG Y, TANG F, BAROLLI L, et al. Jointly modeling multi-grain aspects and opinions for large-scale online review[C]//Proceedings of the 2017 IEEE International Conference on Advanced Information Networking and Applications. Piscataway, NJ:IEEE, 2017:570-577. [13] JIN Z, YANG Y, BAO X, et al. Combining user-based and global lexicon features for sentiment analysis in Twitter[C]//Proceedings of the 2016 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2016:4525-4532. [14] 黄发良, 冯时, 王大玲,等. 基于多特征融合的微博主题情感挖掘[J]. 计算机学报, 2017, 40(4):872-888.(HUANG F L, FENG S, WANG D L, et al. Mining topic sentiment in microblogging based on multi-feature fusion[J]. Chinese Journal of Computers, 2017, 40(4):872-888.) [15] LI F, WANG S, LIU S, et al. SUIT:a supervised user-item based topic model for sentiment analysis[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2014:1636-1642. [16] ZHAO T, LI C, DING Q, et al. User-sentiment topic model:refining user's topics with sentiment information[C]//Proceedings of the 2012 ACM SIGKDD Workshop on Mining Data Semantics. New York:ACM, 2012:Article No. 10. [17] ROSEN-ZVI M, GRIFFITHS T, STEYVERS M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. Arlington, Virginia:AUAI Press, 2004:487-494. [18] MIMNO D, MCCALLUM A. Topic models conditioned on arbitrary features with Dirichlet-multinomial regression[EB/OL].[2017-06-20]. http://www.cs.umass.edu/~mccallum/papers/dmr-uai.pdf. [19] WANG X, MCCALLUM A. Topics over time:a non-Markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2006:424-433. [20] LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1):503-528. [21] 谢丽星, 周明, 孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报, 2012, 26(1):73-83.(XIE L X, ZHOU M, SUN M S. Hierarchical structure based hybrid approach to sentiment analysis of Chinese micro blog and its feature extraction[J]. Journal of Chinese Information Processing, 2012, 26(1):73-83.) |