《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1049-1057.DOI: 10.11772/j.issn.1001-9081.2023040411
收稿日期:
2023-04-13
修回日期:
2023-06-25
接受日期:
2023-06-30
发布日期:
2024-04-22
出版日期:
2024-04-10
通讯作者:
李娜娜
作者简介:
高龙涛(1996—),男,河北邯郸人,硕士研究生,主要研究方向:文本分类、情感分析基金资助:
Received:
2023-04-13
Revised:
2023-06-25
Accepted:
2023-06-30
Online:
2024-04-22
Published:
2024-04-10
Contact:
Nana LI
About author:
GAO Longtao, born in 1996, M. S. candidate. His research interests include text classification, sentiment analysis.
Supported by:
摘要:
在自然语言处理(NLP)的细粒度情感分析问题中,为探索携带结构偏差的预训练语言模型(PLM)对端到端式情感三元组抽取任务的影响,解决方面语义特征依赖容错率低的问题,结合方面感知注意力机制和图卷积网络(GCN),提出用于方面情感三元组抽取任务的方面感知注意力增强图卷积网络(AE-GCN)模型。首先,在方面情感三元组抽取任务中引入多种类型的关系;其次,采用双仿射注意力机制将这些关系嵌入句子中单词之间的相邻张量,并引入方面感知注意力机制以获取句子注意力评分矩阵,深入挖掘与方面相关的语义特征;再次,GCN通过将单词和关系相邻张量分别视为边和节点,将句子转换为多通道图以学习关系感知节点表示;最后,使用一种有效的词对表示细化策略确定词对是否匹配,以考虑方面和意见抽取的隐含结果。在ASTE-D1基准数据集上的实验结果表明,所提模型在14res、14lap、15res和16res子数据集上的F1值相较于增强型多通道图卷积网络(EMC-GCN)模型提升了0.20、0.21、1.25和0.26个百分点;在ASTE-D2基准数据集上,所提模型在14lap、15res和16res子数据集上的F1值相较于EMC-GCN模型提升了0.42、0.31和2.01个百分点。可见所提模型相较于EMC-GCN模型在精确率和有效性方面有较大改进。
中图分类号:
高龙涛, 李娜娜. 基于方面感知注意力增强的方面情感三元组抽取[J]. 计算机应用, 2024, 44(4): 1049-1057.
Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement[J]. Journal of Computer Applications, 2024, 44(4): 1049-1057.
任务 | 输入 | 输出 | 任务类型 |
---|---|---|---|
AE | S | (a1,a2) | 抽取 |
OE | S | (o1,o2) | 抽取 |
ALSC | S+a1 | s1 | 分类 |
S+a2 | s2 | ||
AOE | S+a1 | o1 | 抽取 |
S+a2 | o2 | ||
AESC | S | (a1,s1),(a2,s2) | 抽取&分类 |
Pair | S | (a1,o1),(a2,o2) | 抽取 |
TE | S | (a1,o1,s1),(a2,o2,s2) | 抽取&分类 |
表1 方面级情感分析的7个子任务
Tab. 1 Seven subtasks of aspect-level sentiment analysis
任务 | 输入 | 输出 | 任务类型 |
---|---|---|---|
AE | S | (a1,a2) | 抽取 |
OE | S | (o1,o2) | 抽取 |
ALSC | S+a1 | s1 | 分类 |
S+a2 | s2 | ||
AOE | S+a1 | o1 | 抽取 |
S+a2 | o2 | ||
AESC | S | (a1,s1),(a2,s2) | 抽取&分类 |
Pair | S | (a1,o1),(a2,o2) | 抽取 |
TE | S | (a1,o1,s1),(a2,o2,s2) | 抽取&分类 |
序号 | 输入 | 输出 |
---|---|---|
1 | B-A | 方面项的开始 |
2 | I-A | 在方面项中 |
3 | A | 词对 |
4 | B-O | 意见项的开始 |
5 | I-O | 在意见项中 |
6 | O | 词对 |
7 | POS | 词对 它们与积极、中立、消极这3种情绪极性构成了对 |
8 | NEU | |
9 | NEG | |
10 | NONE | 词对 |
表2 单词之间的标签关系
Tab. 2 Label relationships between words
序号 | 输入 | 输出 |
---|---|---|
1 | B-A | 方面项的开始 |
2 | I-A | 在方面项中 |
3 | A | 词对 |
4 | B-O | 意见项的开始 |
5 | I-O | 在意见项中 |
6 | O | 词对 |
7 | POS | 词对 它们与积极、中立、消极这3种情绪极性构成了对 |
8 | NEU | |
9 | NEG | |
10 | NONE | 词对 |
单词 | 单词 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
The | gourmet | food | is | delicious | but | the | service | is | poor | |
The | N | N | N | N | N | N | N | N | N | N |
gourmet | N | B‑A | A | N | POS | N | N | N | N | N |
food | N | A | I‑A | N | POS | N | N | N | N | N |
is | N | N | N | N | N | N | N | N | N | N |
delicious | N | POS | POS | N | B‑O | N | N | N | N | N |
but | N | N | N | N | N | N | N | N | N | N |
the | N | N | N | N | N | N | N | N | N | N |
service | N | N | N | N | N | N | N | B‑A | N | NEG |
is | N | N | N | N | N | N | N | N | N | N |
poor | N | N | N | N | N | N | N | NEG | N | B‑O |
表3 关系表格填充
Tab. 3 Relationship table filling
单词 | 单词 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
The | gourmet | food | is | delicious | but | the | service | is | poor | |
The | N | N | N | N | N | N | N | N | N | N |
gourmet | N | B‑A | A | N | POS | N | N | N | N | N |
food | N | A | I‑A | N | POS | N | N | N | N | N |
is | N | N | N | N | N | N | N | N | N | N |
delicious | N | POS | POS | N | B‑O | N | N | N | N | N |
but | N | N | N | N | N | N | N | N | N | N |
the | N | N | N | N | N | N | N | N | N | N |
service | N | N | N | N | N | N | N | B‑A | N | NEG |
is | N | N | N | N | N | N | N | N | N | N |
poor | N | N | N | N | N | N | N | NEG | N | B‑O |
数据集 | 14res | 14lap | 15res | 16res | |||||
---|---|---|---|---|---|---|---|---|---|
#S | #T | #S | #T | #S | #T | #S | #T | ||
D1 | 训练集 | 1 259 | 2 356 | 899 | 1 452 | 603 | 1 038 | 863 | 1 421 |
验证集 | 315 | 580 | 225 | 383 | 151 | 239 | 216 | 348 | |
测试集 | 493 | 1 008 | 332 | 547 | 325 | 493 | 328 | 525 | |
D2 | 训练集 | 1 266 | 2 338 | 906 | 1 460 | 605 | 1 013 | 857 | 1 394 |
验证集 | 310 | 577 | 219 | 346 | 148 | 249 | 210 | 339 | |
测试集 | 492 | 994 | 328 | 543 | 322 | 485 | 326 | 514 |
表4 两组数据集的统计信息
Tab. 4 Statistics of two datasets
数据集 | 14res | 14lap | 15res | 16res | |||||
---|---|---|---|---|---|---|---|---|---|
#S | #T | #S | #T | #S | #T | #S | #T | ||
D1 | 训练集 | 1 259 | 2 356 | 899 | 1 452 | 603 | 1 038 | 863 | 1 421 |
验证集 | 315 | 580 | 225 | 383 | 151 | 239 | 216 | 348 | |
测试集 | 493 | 1 008 | 332 | 547 | 325 | 493 | 328 | 525 | |
D2 | 训练集 | 1 266 | 2 338 | 906 | 1 460 | 605 | 1 013 | 857 | 1 394 |
验证集 | 310 | 577 | 219 | 346 | 148 | 249 | 210 | 339 | |
测试集 | 492 | 994 | 328 | 543 | 322 | 485 | 326 | 514 |
模型 | 14res | 14lap | 15res | 16res | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
Peng-two-stage+IOG | 58.89 | 60.41 | 59.64 | 48.62 | 45.52 | 47.02 | 51.70 | 46.04 | 48.71 | 59.25 | 58.09 | 58.67 |
IMN+IOG | 59.57 | 63.88 | 61.65 | 49.21 | 46.23 | 47.68 | 55.24 | 52.33 | 53.75 | — | — | — |
GTS-CNN | 70.79 | 61.71 | 65.94 | 55.93 | 47.52 | 51.38 | 60.09 | 53.57 | 56.64 | 62.63 | 66.98 | 64.73 |
GTS-BiLSTM | 67.28 | 61.91 | 64.49 | 59.42 | 45.13 | 51.30 | 63.26 | 50.71 | 56.29 | 66.07 | 65.05 | 65.56 |
S3E2 | 69.08 | 64.55 | 66.74 | 59.43 | 46.23 | 52.01 | 61.06 | 56.44 | 58.66 | 71.08 | 63.13 | 66.87 |
GTS-BERT | 70.92 | 69.49 | 70.20 | 57.52 | 51.92 | 54.58 | 59.29 | 58.07 | 58.67 | 68.58 | 66.60 | 67.58 |
BMRC | — | — | 70.01 | — | — | 57.83 | — | — | 58.74 | — | — | 67.49 |
EMC-GCN | 71.85 | 72.12 | 71.98 | 61.46 | 55.56 | 58.32 | 59.89 | 61.05 | 60.38 | 65.08 | 71.66 | 68.18 |
AE-GCN | 70.82 | 73.59 | 72.18 | 59.47 | 57.62 | 58.53 | 60.43 | 62.88 | 61.63 | 65.79 | 71.32 | 68.44 |
表5 D1数据集的实验结果 (%)
Tab. 5 Experimental results on D1 dataset
模型 | 14res | 14lap | 15res | 16res | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
Peng-two-stage+IOG | 58.89 | 60.41 | 59.64 | 48.62 | 45.52 | 47.02 | 51.70 | 46.04 | 48.71 | 59.25 | 58.09 | 58.67 |
IMN+IOG | 59.57 | 63.88 | 61.65 | 49.21 | 46.23 | 47.68 | 55.24 | 52.33 | 53.75 | — | — | — |
GTS-CNN | 70.79 | 61.71 | 65.94 | 55.93 | 47.52 | 51.38 | 60.09 | 53.57 | 56.64 | 62.63 | 66.98 | 64.73 |
GTS-BiLSTM | 67.28 | 61.91 | 64.49 | 59.42 | 45.13 | 51.30 | 63.26 | 50.71 | 56.29 | 66.07 | 65.05 | 65.56 |
S3E2 | 69.08 | 64.55 | 66.74 | 59.43 | 46.23 | 52.01 | 61.06 | 56.44 | 58.66 | 71.08 | 63.13 | 66.87 |
GTS-BERT | 70.92 | 69.49 | 70.20 | 57.52 | 51.92 | 54.58 | 59.29 | 58.07 | 58.67 | 68.58 | 66.60 | 67.58 |
BMRC | — | — | 70.01 | — | — | 57.83 | — | — | 58.74 | — | — | 67.49 |
EMC-GCN | 71.85 | 72.12 | 71.98 | 61.46 | 55.56 | 58.32 | 59.89 | 61.05 | 60.38 | 65.08 | 71.66 | 68.18 |
AE-GCN | 70.82 | 73.59 | 72.18 | 59.47 | 57.62 | 58.53 | 60.43 | 62.88 | 61.63 | 65.79 | 71.32 | 68.44 |
模型 | 14res | 14lap | 15res | 16res | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
Peng-two-stage+IOG | 43.24 | 63.66 | 51.46 | 37.38 | 50.38 | 42.87 | 48.07 | 57.51 | 52.32 | 46.96 | 64.24 | 54.21 |
OTE-MTL | 62.00 | 55.97 | 58.71 | 49.53 | 39.22 | 43.42 | 56.37 | 40.94 | 47.13 | 62.88 | 52.10 | 56.96 |
JET-BERT | 70.56 | 55.94 | 62.40 | 55.39 | 47.33 | 51.04 | 64.45 | 51.96 | 57.53 | 70.42 | 58.37 | 63.83 |
GTS-BERT | 68.09 | 69.54 | 68.81 | 59.40 | 51.94 | 55.42 | 59.28 | 57.93 | 58.60 | 68.32 | 66.86 | 67.58 |
BMRC | 75.61 | 61.77 | 67.99 | 70.55 | 48.98 | 57.82 | 68.51 | 53.40 | 60.02 | 71.20 | 61.08 | 65.75 |
BART-ABSA | 65.52 | 64.99 | 65.25 | 61.41 | 56.19 | 58.69 | 59.14 | 59.38 | 59.26 | 66.60 | 68.68 | 67.62 |
EMC-GCN | 71.21 | 72.39 | 71.78 | 61.70 | 56.26 | 58.81 | 61.54 | 62.47 | 61.93 | 65.62 | 71.30 | 68.33 |
AE-GCN | 71.37 | 72.02 | 71.70 | 60.08 | 58.41 | 59.23 | 62.63 | 61.86 | 62.24 | 67.44 | 73.49 | 70.34 |
表6 D2数据集的实验结果 (%)
Tab. 6 Experimental results on D2 dataset
模型 | 14res | 14lap | 15res | 16res | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
Peng-two-stage+IOG | 43.24 | 63.66 | 51.46 | 37.38 | 50.38 | 42.87 | 48.07 | 57.51 | 52.32 | 46.96 | 64.24 | 54.21 |
OTE-MTL | 62.00 | 55.97 | 58.71 | 49.53 | 39.22 | 43.42 | 56.37 | 40.94 | 47.13 | 62.88 | 52.10 | 56.96 |
JET-BERT | 70.56 | 55.94 | 62.40 | 55.39 | 47.33 | 51.04 | 64.45 | 51.96 | 57.53 | 70.42 | 58.37 | 63.83 |
GTS-BERT | 68.09 | 69.54 | 68.81 | 59.40 | 51.94 | 55.42 | 59.28 | 57.93 | 58.60 | 68.32 | 66.86 | 67.58 |
BMRC | 75.61 | 61.77 | 67.99 | 70.55 | 48.98 | 57.82 | 68.51 | 53.40 | 60.02 | 71.20 | 61.08 | 65.75 |
BART-ABSA | 65.52 | 64.99 | 65.25 | 61.41 | 56.19 | 58.69 | 59.14 | 59.38 | 59.26 | 66.60 | 68.68 | 67.62 |
EMC-GCN | 71.21 | 72.39 | 71.78 | 61.70 | 56.26 | 58.81 | 61.54 | 62.47 | 61.93 | 65.62 | 71.30 | 68.33 |
AE-GCN | 71.37 | 72.02 | 71.70 | 60.08 | 58.41 | 59.23 | 62.63 | 61.86 | 62.24 | 67.44 | 73.49 | 70.34 |
AE | 结构偏差 | 14res | 14lap | 15res | 16res |
---|---|---|---|---|---|
— | — | 71.78 | 58.81 | 61.93 | 68.33 |
√ | — | 72.17 | 60.59 | 62.12 | 68.84 |
— | √ | 71.84 | 59.11 | 62.07 | 69.35 |
√ | √ | 71.70 | 59.23 | 62.24 | 70.34 |
表7 D2数据集消融研究的实验结果(F1值) (%)
Tab. 7 Experimental results (F1 values) of ablation study on D2 dataset
AE | 结构偏差 | 14res | 14lap | 15res | 16res |
---|---|---|---|---|---|
— | — | 71.78 | 58.81 | 61.93 | 68.33 |
√ | — | 72.17 | 60.59 | 62.12 | 68.84 |
— | √ | 71.84 | 59.11 | 62.07 | 69.35 |
√ | √ | 71.70 | 59.23 | 62.24 | 70.34 |
1 | 赵妍妍,秦兵,刘挺. 文本情感分析[J]. 软件学报,2010,21(8):1834-1848. 10.3724/sp.j.1001.2010.03832 |
ZHAO Y Y. QIN B, LIU T. Sentiment analysis [J]. Journal of Software, 2010,21(8): 1834-1848. 10.3724/sp.j.1001.2010.03832 | |
2 | HU M, LIU B. Mining and summarizing customer reviews[C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004: 168-177. 10.1145/1014052.1014073 |
3 | XUE W, LI T. Aspect based sentiment analysis with gated convolutional networks [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 2514-2523. 10.18653/v1/p18-1234 |
4 | PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis [C]// Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8600-8607. 10.1609/aaai.v34i05.6383 |
5 | ZHANG Z, ZHOU Z, WANG Y. SSEGCN: syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis [C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4916-4925. 10.18653/v1/2022.naacl-main.362 |
6 | ZHANG C, REN L, MA F, et al. Structural bias for aspect sentiment triplet extraction [C]// Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg: ACL, 2022: 6736-6745. |
7 | YAN H, DAI J, JI T, et al. A unified generative framework for aspect-based sentiment analysis [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2020: 2416-2429. 10.18653/v1/2021.acl-long.188 |
8 | LIU B. Synthesis Lectures on Human Language Technologies[M]. Sentiment Analysis and Opinion Mining. [S.l.]: Springer, 2012: 1-167. 10.2200/s00416ed1v01y201204hlt016 |
9 | LI X, LAM W. Deep multi-task learning for aspect term extraction with memory interaction [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 2886-2892. 10.18653/v1/d17-1310 |
10 | XU H, LIU B, SHU L, et al. Double embeddings and CNN-based sequence labeling for aspect extraction [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2018: 592-598. 10.18653/v1/p18-2094 |
11 | HE R, LEE W S, NG H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 504-515. 10.18653/v1/p19-1048 |
12 | 武婷, 曹春萍. 融合位置权重的基于注意力交叉注意力的长短期记忆方面情感分析模型[J]. 计算机应用, 2019, 39(8): 2198-2203. 10.11772/j.issn.1001-9081.2018122565 |
WU T, CAO C P. Aspect level sentiment analysis model with location weight and long short-term memory based on attention-over-attention [J]. Journal of Computer Applications, 2019, 39(8): 2198-2203. 10.11772/j.issn.1001-9081.2018122565 | |
13 | FAN Z F, WU Z, DAI X Y, et al. Target-oriented opinion words extraction with target-fused neural sequence labeling [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 2509-2518. 10.18653/v1/n19-1259 |
14 | WU Z, ZHAO F, DAI X-Y, et al. Latent opinions transfer network for target-oriented opinion words extraction [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 9298-9305. 10.1609/aaai.v34i05.6469 |
15 | MITCHELL M, AGUILAR J, WILSON T, et al. Open domain targeted sentiment [C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1643-1654. |
16 | LI X, BING L, LI P, et al. A unified model for opinion target extraction and target sentiment prediction [C]// Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6714-6721. 10.1609/aaai.v33i01.33016714 |
17 | ZHAO H, HUANG L, ZHANG R, et al. SpanMlt: a span-based multi-task learning framework for pair-wise aspect and opinion terms extraction [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3239-3248. 10.18653/v1/2020.acl-main.296 |
18 | XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349. 10.18653/v1/2020.emnlp-main.183 |
19 | LIU S, LI K, LI Z. A robustly optimized BMRC for aspect sentiment triplet extraction [C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 272-278. 10.18653/v1/2022.naacl-main.20 |
20 | ZHANG C, LI Q, SONG D, et al. A multi-task learning framework for opinion triplet extraction [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 819-828. 10.18653/v1/2020.findings-emnlp.72 |
21 | WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2576-2585. 10.18653/v1/2020.findings-emnlp.234 |
22 | CHEN H, ZHAI Z. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 2974-2985. 10.18653/v1/2022.acl-long.212 |
23 | GUPTA P, SCHÜTZE H, ANDRASSY B. Table filling multi-task recurrent neural network for joint entity and relation extraction [C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 2537-2547. |
24 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
25 | CHANG T, XU Y, XU W, et al. Convolutions and self-attention: re-interpreting relative positions in pre-trained language models [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4322-4333. 10.18653/v1/2021.acl-long.333 |
26 | MA F, ZHANG C, SONG D W. Exploiting position bias for robust aspect sentiment classification [C]// Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1352-1358. 10.18653/v1/2021.findings-acl.116 |
27 | RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 140. |
28 | FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442. 10.18653/v1/d18-1380 |
29 | LI L, LIU Y, ZHOU A Q. Hierarchical attention based position-aware network for aspect-level sentiment analysis [C]// Proceedings of the 22nd Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2018: 181-189. 10.18653/v1/k18-1018 |
30 | DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing [C/OL]// Proceedings of the 5th International Conference on Learning Representations [2023-04-01]. . 10.18653/v1/k17-3002 |
31 | LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 6319-6329. 10.18653/v1/2021.acl-long.494 |
32 | READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification [J]. Machine Learning, 2011, 85(3): 333-359. 10.1007/s10994-011-5256-5 |
33 | LI C, GAO F, BU J, et al. SentiPrompt: sentiment knowledge enhanced promp-tuning for aspect-based sentiment analysis [EB/OL]. [2023-04-01]. . |
34 | CHEN Z, HUANG H, LIU B, et al. Semantic and syntactic enhanced aspect sentiment triplet extraction [C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1474-1483. 10.48550/arXiv.2106.03315 |
[1] | 黎施彬, 龚俊, 汤圣君. 基于Graph Transformer的半监督异配图表示学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1816-1823. |
[2] | 于右任, 张仰森, 蒋玉茹, 黄改娟. 融合多粒度语言知识与层级信息的中文命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1706-1712. |
[3] | 柯添赐, 刘建华, 孙水华, 郑智雄, 蔡子杰. 融合强关联依赖和简洁语法的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1786-1795. |
[4] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
[5] | 刘耀, 李雨萌, 宋苗苗. 基于业务流程的认知图谱[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1699-1705. |
[6] | 杨先凤, 汤依磊, 李自强. 基于交替注意力机制和图卷积网络的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1058-1064. |
[7] | 郭磊, 贾真, 李天瑞. 面向方面级情感分析的交互式关系图注意力网络[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 696-701. |
[8] | 杨保山, 杨智, 陈性元, 韩冰, 杜学绘. Android应用敏感行为与隐私政策一致性分析[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 788-796. |
[9] | 王楷天, 叶青, 程春雷. 基于异构图表示的中医电子病历分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 411-417. |
[10] | 罗俊豪, 朱焱. 用于未对齐多模态语言序列情感分析的多交互感知网络[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 79-85. |
[11] | 陈丽安, 过弋. 融合个体偏差信息的文本情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 145-151. |
[12] | 冯程皓, 谢振平, 丁博文. 中文文本纠错软件测试用例的选择生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 101-112. |
[13] | 史含笑, 王雷春. 结合LSTM和自注意力机制的图卷积网络短期电力负荷预测[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 311-317. |
[14] | 徐丽, 符祥远, 李浩然. 基于门控卷积的时空交通流预测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2760-2765. |
[15] | 张心月, 刘蓉, 魏驰宇, 方可. 融合提示知识的方面级情感分析方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2753-2759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||