《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1049-1057.DOI: 10.11772/j.issn.1001-9081.2023040411

• 人工智能 • 上一篇    下一篇

基于方面感知注意力增强的方面情感三元组抽取

高龙涛, 李娜娜()   

  1. 河北工业大学 人工智能与数据科学学院,天津 300401
  • 收稿日期:2023-04-13 修回日期:2023-06-25 接受日期:2023-06-30 发布日期:2024-04-22 出版日期:2024-04-10
  • 通讯作者: 李娜娜
  • 作者简介:高龙涛(1996—),男,河北邯郸人,硕士研究生,主要研究方向:文本分类、情感分析
    李娜娜(1980—),女,河北保定人,副教授,博士,主要研究方向:数据挖掘、机器学习。linana@scse.hebut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61806072)

Aspect sentiment triplet extraction based on aspect-aware attention enhancement

Longtao GAO, Nana LI()   

  1. School of Artificial Intelligence,Hebei University of technology,Tianjin 300401,China
  • Received:2023-04-13 Revised:2023-06-25 Accepted:2023-06-30 Online:2024-04-22 Published:2024-04-10
  • Contact: Nana LI
  • About author:GAO Longtao, born in 1996, M. S. candidate. His research interests include text classification, sentiment analysis.
  • Supported by:
    National Natural Science Foundation of China(61806072)

摘要:

在自然语言处理(NLP)的细粒度情感分析问题中,为探索携带结构偏差的预训练语言模型(PLM)对端到端式情感三元组抽取任务的影响,解决方面语义特征依赖容错率低的问题,结合方面感知注意力机制和图卷积网络(GCN),提出用于方面情感三元组抽取任务的方面感知注意力增强图卷积网络(AE-GCN)模型。首先,在方面情感三元组抽取任务中引入多种类型的关系;其次,采用双仿射注意力机制将这些关系嵌入句子中单词之间的相邻张量,并引入方面感知注意力机制以获取句子注意力评分矩阵,深入挖掘与方面相关的语义特征;再次,GCN通过将单词和关系相邻张量分别视为边和节点,将句子转换为多通道图以学习关系感知节点表示;最后,使用一种有效的词对表示细化策略确定词对是否匹配,以考虑方面和意见抽取的隐含结果。在ASTE-D1基准数据集上的实验结果表明,所提模型在14res、14lap、15res和16res子数据集上的F1值相较于增强型多通道图卷积网络(EMC-GCN)模型提升了0.20、0.21、1.25和0.26个百分点;在ASTE-D2基准数据集上,所提模型在14lap、15res和16res子数据集上的F1值相较于EMC-GCN模型提升了0.42、0.31和2.01个百分点。可见所提模型相较于EMC-GCN模型在精确率和有效性方面有较大改进。

关键词: 自然语言处理, 情感分析, 情感三元组抽取, 方面感知注意力, 图卷积网络

Abstract:

For fine-grained sentiment analysis in Natural Language Processing (NLP), in order to explore the influence of Pre-trained Language Models (PLMs) with structural biases on the end-to-end sentiment triple extraction task, and solve the problem of low fault tolerance rate of aspect semantic feature dependence that is common in previous studies, combining aspect-aware attention mechanism and Graph Convolutional Network (GCN), an Aspect-aware attention Enhanced GCN (AE-GCN) model was proposed for aspect sentiment triple extraction tasks. Firstly, multiple types of relations were introduced for the aspect sentiment triple extraction task. Then, these relations were embedded into the adjacent tensors between words in the sentence by using the double affine attention mechanism. At the same time, the aspect-aware attention mechanism was introduced to obtain the sentence attention scoring matrix, and the aspect-related semantic features were further mined. Next, a sentence was converted into a multi-channel graph through the graph convolutional neural network, to learn a relation-aware node representation by treating words and relation adjacent tensors as edges and nodes, respectively. Finally, an effective word pair representation refinement strategy was used to determine whether word pairs matched, which was used to consider the implicit results of aspect and opinion extraction. Experimental results show that, on ASTE-D1 benchmark dataset, the F1 values of the proposed model on the 14res, 14lap, 15res and 16res sub-datasets are improved by 0.20, 0.21, 1.25 and 0.26 percentage points compared with the Enhanced Multi-Channel Graph Convolutional Network (EMC-GCN) model; on ASTE-D2 benchmark dataset, the F1 values of the proposed model on the 14lap, 15res and 16res sub-datasets are increased by 0.42, 0.31 and 2.01 percentage points compared with the EMC-GCN model. It can be seen that the proposed model has great improvement in precision and effectiveness compared with the EMC-GCN model.

Key words: Natural Language Processing (NLP), sentiment analysis, sentiment triplet extraction, aspect-aware attention, Graph Convolutional Network (GCN)

中图分类号: