[1] MARTINOVSKI B,TRAUM D. The error is the clue:breakdown in human-machine interaction[C]//Proceedings of the 2003 ISCA Tutorial and Research Workshop on Error Handling in Dialogue Systems. Chateau d' Oex,Vaud,Switzerland:International Speech Communication Association,2003:11-16. [2] PRENDINGER H, MORI J, ISHIZUKA M. Using human physiology to evaluate subtle expressivity of a virtual quizmaster in a mathematical game[J]. International Journal of Human-Computer Studies,2005,62(2):231-245. [3] SHANG L,LU Z,LI H. Neural responding machine for short-text conversation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics/7th International Joint Conference on Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2015:1577-1586. [4] MOU L,SONG Y,YAN R,et al. Sequence to backward and forward sequences:a content-introducing approach to generative short text conversation[C]//Proceedings of the 26th International Conference on Computational Linguistics. Osaka:COLING 2016 Organizing Committee,2016:3349-3358. [5] XING C,WU W,WU Y,et al. Topic aware neural response generation[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:3351-3357. [6] ZHOU H, HUANG M, ZHANG T, et al. Emotional chatting machine:emotional conversation generation with internal and external memory[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2018:730-738. [7] 彭叶红. 基于主题模型与变分自编码的情感对话生成技术研究[D]. 武汉:华中师范大学,2019:22-24.(PENG Y H. Research on emotional conversation generation technology based on topic model and variational auto-encoder[D]. Wuhan:Central China Normal University,2019:22-24.) [8] WANG W,HUANG M,XU X,et al. Chat more:deepening and widening the chatting topic via a deep model[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2018:255-264. [9] ZHOU X,LI L,DONG D,et al. Multi-turn response selection for chatbots with deep attention matching network[C]//Proceedings of the 56th Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2018:1118-1127. [10] WU Y,LI Z,WU W,ZHOU M. Response selection with topic clues for retrieval-based chatbots[J]. Neurocomputing,2018, 316:251-261. [11] YANG L,QIU M,QU C,et al. Response ranking with deep matching networks and external knowledge in information-seeking conversation systems[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2018:245-254. [12] SHAO Y,GOUWS S,BRITZ D,et al. Generating high-quality and informative conversation responses with sequence-to-sequence models[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2017:2210-2219. [13] YAO L,ZHNAG Y,FENG Y,et al. Towards implicit contentintroducing for generative short-text conversation systems[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2017:2190-2199. [14] TAO C,GAO S,SHANG M,et al. Get the point of my utterance! Learning towards effective responses with multi-head attention mechanism[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:4418-4424. [15] LIU B,XU Z,SUN C,et al. Content-oriented user modeling for personalized response ranking in chatbots[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2018, 26(1):122-133. [16] 陈晨, 朱晴晴, 严睿, 等. 基于深度学习的开放领域对话系统研究综述[J]. 计算机学报,2019,42(7):1439-1466.(CHEN C, ZHU Q Q,YAN R,et al. Survey on deep learning based open domain dialogue system[J]. Chinese Journal of Computers,2019, 42(7):1439-1466.) [17] GHOSH S,CHOLLET M,LAKSANA E,et al. Affect-LM:a neural Language Model for customizable Affective text generation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2017:634-642. [18] ZHANG R,WANG Z. Learning to converse emotionally like humans:a conditional variational approach[C]//Proceedings of the 7th CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 11108. Cham:Springer,2018:98-109. [19] CHO K,VAN MERRIËNBOER B,BAHDANAU D,et al. On the properties of neural machine translation:encoder-decoder approaches[C]//Proceedings of the 8th Workshop on Syntax, Semantics and Structure in Statistical Translation. Stroudsburg, PA:Association for Computational Linguistics,2014:103-111. [20] ZNAO W X,JIANG J,WENG J,et al. Comparing Twitter and traditional media using topic models[C]//Proceedings of the 33rd European Conference on Information Retrieval, LNCS 6611. Berlin:Springer,2011:338-349. [21] 徐琳宏, 林鸿飞, 潘宇, 等. 情感词汇本体的构造[J]. 情报学报,2008,27(2):180-185.(XU L H,LIN H F,PAN Y,et al. Constructing the affective lexicon ontology[J]. Journal of the China Society for Scientific and Technical Information,2008,27(2):180-185.) [22] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1412.6980v9.pdf. [23] BAHDANAU D,CHO K,BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1409.0473.pdf. [24] LIU C W,LOWE R,SERBAN L,et al. How NOT to evaluate your dialogue system:an empirical study of unsupervised evaluation metrics for dialogue response generation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2016:2122-2132. [25] LI J,GALLEY M,BROCKETT C,et al. A diversity-promoting objective function for neural conversation models[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,PA:Association for Computational Linguistics,2016:110-119. |