[1] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[C]//Proceedings of the 6th Conference on Symposium on Opearting Systems Design and Implementation. Berkeley, CA:USENIX Association, 2004:137-149. [2] CUTTING D. Apache Hadoop[EB/OL]. (2015-02-25)[2018-08-12]. http://hadoop.apache.org. [3] BABU S. Towards automatic optimization of MapReduce programs[C]//Proceedings of the 1st ACM Symposium on Cloud Computing. New York:ACM, 2010:137-142. [4] TIPCON T. 7 tips for improving MapReduce performance[EB/OL]. (2009-12-17)[2018-08-12]. http://www.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/. [5] HERODOTOU H, LIM H, LUO G, et al. Starfish:a self-tuning system for big data analytics[C]//Proceedings of the 20115th Biennial Conference on Innovative Data Systems Research. Asilomar, CA:[s.n.], 2011:261-272. [6] WANG J H, QIU M K, GUO B, et al. Phase-reconfigurable shuffle optimization for Hadoop MapReduce[EB/OL].[2018-08-12]. https://www.onacademic.com/detail/journal_1000038191224210_fd14.html. [7] YIGITBASI N, WILLKE T L, LIAO G, et al. Towards machine learning-based auto-tuning of MapReduce[C]//Proceedings of the IEEE 21st International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. Piscataway, NJ:IEEE, 2013:11-20. [8] CHAUDHURI S, NARASAYYA V. Self-tuning database systems:a decade of progress[C]//Proceedings of the 2007 International Conference on Very Large Data Bases. Framingham, MA:VLDB Endowment, 2007:3-14. [9] IPEK E, de SUPINSKI B R, SCHULZ M, et al. An approach to performance prediction for parallel applications[C]//Proceedings of the 2005 European Conference on Parallel Processing, LNCS 3648. Berlin:Springer, 2005:196-205. [10] SINGER J, KOVOOR G, BROWN G, et al. Garbage collection auto-tuning for Java MapReduce on multi-cores[C]//Proceedings of the 2011 International Symposium on Memory Management. New York:ACM, 2011:109-118. [11] CHENG D Z, RAO J, GUO Y F, et al. Improving performance of heterogeneous MapReduce clusters with adaptive task tuning[J]. IEEE Transactions on Parallel & Distributed Systems, 2017, 28(3):774-786. [12] WASI-UR-RAHMAN M, ISLAM N S, LU X, et al. MR-Advisor:a comprehensive tuning tool for advising HPC users to accelerate MapReduce applications on supercomputers[C]//Proceedings of the 28th International Symposium on Computer Architecture and High Performance Computing. Piscataway, NJ:IEEE, 2016:198-205. [13] 童颖.基于机器学习的Hadoop参数调优方法[D].武汉:华中科技大学,2016:1-52.(TONG Y. Hadoop parameters tuning method based on machine learning[D]. Wuhan:Huazhong University of Science and Technology, 2016:1-52.) [14] LIAO G, DATTA K, WILLKE T L. Gunther:search-based auto-tuning of MapReduce[C]//Proceedings of the 2013 European Conference on Parallel Processing, LNCS 8097. Berlin:Springer, 2013:406-419. [15] DEB K. An introduction to genetic algorithms[J]. Sadhana, 1999, 24(4/5):293-315. [16] 祝春祥,陈世平,陈敏刚.基于递归随机抽样的Hadoop配置优化[J].计算机工程,2016,42(2):26-32.(ZHU C X, CHEN S P, CHEN M G. Configuration optimization of Hadoop based on recursive random sampling[J]. Computer Engineering, 2016, 42(2):26-32.) |