《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (3): 835-841.DOI: 10.11772/j.issn.1001-9081.2022010031
收稿日期:
2022-01-11
修回日期:
2022-03-10
接受日期:
2022-03-14
发布日期:
2022-04-06
出版日期:
2023-03-10
通讯作者:
王帆
作者简介:
张玉杰(1966—),男,陕西咸阳人,教授,主要研究方向:模式识别、机器学习、智能控制、物联网基金资助:
Received:
2022-01-11
Revised:
2022-03-10
Accepted:
2022-03-14
Online:
2022-04-06
Published:
2023-03-10
Contact:
Fan WANG
About author:
ZHANG Yujie, born in 1966, M. S., professor. His research interests include pattern recognition, machine learning, intelligent control, internet of things.Supported by:
摘要:
针对当前照明环境存在能耗浪费严重的问题,提出一种基于改进麻雀搜索算法(P-SSA)的照明控制优化方法。首先为增加初始种群的多样性、避免早熟收敛和增强寻优能力,对SSA引入Logistic混沌初始化、柯西变异及历史最优位置的记忆功能;然后综合考虑光环境中人员存在状态、天然光分布及多灯具之间的耦合作用建立适应度函数,并使用DIALux evo专业照明仿真软件获取人工光照度传递矩阵和天然光照度分布;最后对改进的SSA进行性能验证,并使用多个优化算法进行调光系数组合寻优的实验。实验结果表明,相较于粒子群优化算法(PSO)、算术优化算法(AOA)等,基于P-SSA的照明控制优化方法可以快速并精确地找到最优调光系数的组合,并实现满足舒适性为前提下的最大化节能性要求。
中图分类号:
张玉杰, 王帆. 基于改进麻雀搜索算法的照明控制优化[J]. 计算机应用, 2023, 43(3): 835-841.
Yujie ZHANG, Fan WANG. Lighting control optimization based on improved sparrow search algorithm[J]. Journal of Computer Applications, 2023, 43(3): 835-841.
基准函数表达式 | 维度 | 取值范围 | 最优解 |
---|---|---|---|
30 | [-10,10] | 0 | |
30 | [-100,100] | 0 | |
30 | [-100,100] | 0 | |
30 | [-500,500] | -418.9n | |
30 | [-5.12,5.12] | 0 | |
30 | [-32,32] | 0 |
表1 基准测试函数信息
Tab. 1 Benchmark function information
基准函数表达式 | 维度 | 取值范围 | 最优解 |
---|---|---|---|
30 | [-10,10] | 0 | |
30 | [-100,100] | 0 | |
30 | [-100,100] | 0 | |
30 | [-500,500] | -418.9n | |
30 | [-5.12,5.12] | 0 | |
30 | [-32,32] | 0 |
测试函数 | 统计值 | PSO | BES | AOA | SSA | P-SSA |
---|---|---|---|---|---|---|
均值 | 1.566E-01 | 3.098E-27 | 1.291E-21 | 9.152E-42 | 5.231E-49 | |
标准差 | 5.342E-01 | 9.295E-30 | 6.736E-40 | 5.631E-24 | 1.878E-48 | |
均值 | 1.220E+02 | 0.000E+00 | 9.315E-31 | 1.962E-97 | 0.000E+00 | |
标准差 | 4.562E+02 | 0.000E+00 | 5.102E-30 | 2.567E-115 | 0.000E+00 | |
均值 | 1.405E+00 | 1.709E-207 | 3.230E-07 | 1.365E-93 | 3.281E-213 | |
标准差 | 3.104E+00 | 5.127E-229 | 1.769E-06 | 6.728E-93 | 6.125E-276 | |
均值 | -6.230E+03 | -4.694E+03 | -2.437E+03 | -1.912E+03 | -8.561E+03 | |
标准差 | 1.601E+03 | 5.507E+02 | 2.755E+02 | 1.114E+02 | 7.129E+02 | |
均值 | 1.029E+01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
标准差 | 2.087E-01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
均值 | 1.326E-00 | 8.881E-16 | 8.881E-16 | 7.165E-15 | 8.881E-16 | |
标准差 | 7.713E-01 | 0.000E+00 | 0.000E+00 | 1.071E-15 | 0.000E+00 |
表2 算法测试结果比较
Tab. 2 Algorithm test results comparison
测试函数 | 统计值 | PSO | BES | AOA | SSA | P-SSA |
---|---|---|---|---|---|---|
均值 | 1.566E-01 | 3.098E-27 | 1.291E-21 | 9.152E-42 | 5.231E-49 | |
标准差 | 5.342E-01 | 9.295E-30 | 6.736E-40 | 5.631E-24 | 1.878E-48 | |
均值 | 1.220E+02 | 0.000E+00 | 9.315E-31 | 1.962E-97 | 0.000E+00 | |
标准差 | 4.562E+02 | 0.000E+00 | 5.102E-30 | 2.567E-115 | 0.000E+00 | |
均值 | 1.405E+00 | 1.709E-207 | 3.230E-07 | 1.365E-93 | 3.281E-213 | |
标准差 | 3.104E+00 | 5.127E-229 | 1.769E-06 | 6.728E-93 | 6.125E-276 | |
均值 | -6.230E+03 | -4.694E+03 | -2.437E+03 | -1.912E+03 | -8.561E+03 | |
标准差 | 1.601E+03 | 5.507E+02 | 2.755E+02 | 1.114E+02 | 7.129E+02 | |
均值 | 1.029E+01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
标准差 | 2.087E-01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
均值 | 1.326E-00 | 8.881E-16 | 8.881E-16 | 7.165E-15 | 8.881E-16 | |
标准差 | 7.713E-01 | 0.000E+00 | 0.000E+00 | 1.071E-15 | 0.000E+00 |
状态 | 人工光照度传递矩阵/lx | 天然光照度/lx | 人员分布 | 目标照度/lx |
---|---|---|---|---|
State 1 | ||||
State 2 | ||||
State 3 | ||||
State 4 |
表3 照度参数及4种人员分布状态数据
Tab. 3 Illumination parameters and four kinds of personnel distribution data
状态 | 人工光照度传递矩阵/lx | 天然光照度/lx | 人员分布 | 目标照度/lx |
---|---|---|---|---|
State 1 | ||||
State 2 | ||||
State 3 | ||||
State 4 |
人员分布 状态 | 最优适应度值 | ||||
---|---|---|---|---|---|
PSO | BES | AOA | SSA | P-SSA | |
State 1 | 159.763 | 150.141 | 161.435 | 172.130 | 149.592 |
State 2 | 85.978 | 59.826 | 72.720 | 67.100 | 59.701 |
State 3 | 95.152 | 89.893 | 94.513 | 125.496 | 89.893 |
State 4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
表4 4种人员分布状态下的寻优结果
Tab. 4 Optimization results in four states of personnel distribution
人员分布 状态 | 最优适应度值 | ||||
---|---|---|---|---|---|
PSO | BES | AOA | SSA | P-SSA | |
State 1 | 159.763 | 150.141 | 161.435 | 172.130 | 149.592 |
State 2 | 85.978 | 59.826 | 72.720 | 67.100 | 59.701 |
State 3 | 95.152 | 89.893 | 94.513 | 125.496 | 89.893 |
State 4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
人员分布 状态 | 最优调光比组合 | 功率/W | |||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | ||
State 1 | 0.15 | 0.06 | 0.12 | 0.89 | 0.00 | 0.86 | 74.88 |
State 2 | 0.19 | 0.09 | 0.22 | 0.13 | 0.05 | 0.14 | 29.52 |
State 3 | 0.23 | 0.00 | 0.01 | 0.13 | 0.05 | 0.89 | 47.16 |
State 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
表5 4种人员分布状态的最优调光比
Tab. 5 Optimal dimming coefficients in four states of personnel distribution
人员分布 状态 | 最优调光比组合 | 功率/W | |||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | ||
State 1 | 0.15 | 0.06 | 0.12 | 0.89 | 0.00 | 0.86 | 74.88 |
State 2 | 0.19 | 0.09 | 0.22 | 0.13 | 0.05 | 0.14 | 29.52 |
State 3 | 0.23 | 0.00 | 0.01 | 0.13 | 0.05 | 0.89 | 47.16 |
State 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1 | 罗涛,燕达,江亿,等.办公建筑照明能耗模拟方法研究(上)[J].建筑科学, 2017, 33(4):101-109. 10.13614/j.cnki.11-1962/tu.2017.04.15 |
LUO T, YAN D, JIANG Y, et al. Research on the simulation method of lighting energy consumption in office buildings (Part 1) [J]. Building Science, 2017, 33(4): 101-109. 10.13614/j.cnki.11-1962/tu.2017.04.15 | |
2 | 郑国恒,周瑶,张柯.高校教室灯光节能控制系统的设计[J].照明工程学报,2010,21(2):32-37. 10.3969/j.issn.1004-440X.2010.02.007 |
ZHENG G H, ZHOU Y, ZHANG K. Design of energy-saving control system for lighting in college classrooms [J]. China Illuminating Engineering Journal, 2010, 21(2): 32-37. 10.3969/j.issn.1004-440X.2010.02.007 | |
3 | LIN Q, LUO C, CAI H, et al. A coupling control model of color temperature and illumination in naturally lighted room based on evolutionary algorithm[J]. Sensors and Materials, 2019, 31(6):2061-2072. 10.18494/SAM.2019.2414 |
4 | ROMERO-RODRIGUEZ W J G, BALTAZAR R, ZAMUDIO V, et al. Comparative study of bio-inspired algorithms applied to illumination optimization in an ambient intelligent environment[M]// JEZIC G, CHEN-BURGER Y H J, KUSEK M, et al. Agents and Multi-agent Systems: Technologies and Applications 2019, SIST 148. Singapore: Springer, 2020:215-226. 10.1007/978-981-13-8679-4_18 |
5 | 郭旭,董丽,陈立崟,等.分布式照明系统的个性化调光方法[J].大连工业大学学报, 2017, 36(6):455-458. 10.3969/j.issn.1674-1404.2017.06.015 |
GUO X, DONG L, CHEN L Y, et al. Personalized dimming method of distributed lighting system [J]. Journal of Dalian Polytechnic University, 2017, 36(6): 455-458. 10.3969/j.issn.1674-1404.2017.06.015 | |
6 | 周士伟. 智能照明系统节能控制的研究[D].成都:电子科技大学,2017: 38-65. |
ZHOU S W. Research on energy-saving control of intelligent lighting system [D]. Chengdu: University of Electronic Science and Technology of China, 2017:38-65. | |
7 | 王出航,刘峰.采用遗传算法和WSN的智能灯控方法设计[J].控制工程,2017,24(2):341-345. 10.14107/j.cnki.kzgc.150130 |
WANG C H, LIU F. Design of intelligent light control method using genetic algorithm and WSN [J]. Control Engineering, 2017, 24(2): 341-345. 10.14107/j.cnki.kzgc.150130 | |
8 | SI W, PAN X, OGAI H, et al. LP guided PSO algorithm for office lighting control[J]. IEICE Transactions on Information and Systems, 2016, 99 (7):1753-1761. 10.1587/transinf.2015edp7242 |
9 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61. 10.1016/j.advengsoft.2013.12.007 |
10 | ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: No.113609. 10.1016/j.cma.2020.113609 |
11 | ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53(3):2237-2264. 10.1007/s10462-019-09732-5 |
12 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020,8(1):22-34. 10.1080/21642583.2019.1708830 |
13 | 汤安迪,韩统,徐登武,等.基于混沌麻雀搜索算法的无人机航迹规划方法[J].计算机应用,2021,41(7):2128-2136. 10.11772/j.issn.1001-9081.2020091513 |
TANG A D, HAN T, XU D W, et al. UAV track planning method based on chaotic sparrow search algorithm [J]. Journal of Computer Applications, 2021, 41(7): 2128-2136. 10.11772/j.issn.1001-9081.2020091513 | |
14 | 尹德鑫,张达敏,蔡朋宸,等.改进的麻雀搜索优化算法及其应用[J].计算机工程与科学,2022,44(10):1844-1851. |
YIN D X, ZHANG D M, CAI P C, et al. An improved sparrow search optimization algorithm and its application [J]. Computer Engineering and Science, 2022,44(10): 1844-1851. | |
15 | 钱福如,樊艳芳,刘红政,等.基于Logistic混沌映射的自适应粒子群无功优化研究[J].电力电容器与无功补偿,2017,38(4):146-151. 10.14044/j.1674-1757.pcrpc.2017.04.026 |
QIAN F R, FAN Y F, LIU H Z, et al. Research on adaptive particle swarm reactive power optimization based on logistic chaos mapping [J]. Power Capacitors & Reactive Power Compensation, 2017, 38(4):146-151. 10.14044/j.1674-1757.pcrpc.2017.04.026 | |
16 | 苏福清,匡洪海,钟浩,等.基于柯西变异改进粒子群算法的无功优化[J].电气工程学报,2021,16(1):55-61. |
SU F Q, KUANG H H, ZHONG H, et al. Reactive power optimization based on cauchy variation improved particle swarm optimization [J]. Journal of Electrical Engineering, 2021, 16(1): 55-61. | |
17 | LEE H, CHOI C H, SUNG M. Development of a dimming lighting control system using general illumination and location-awareness technology[J]. Energies, 2018, 11(11): No.2999. 10.3390/en11112999 |
18 | ROMERO-RODRIGUEZ W J G, BALTAZAR R, VALADEZ J M C, et al. A novel model for optimization of intelligent multi-user visual comfort system based on soft-computing algorithms[J]. Journal of Ambient Intelligence and Smart Environments, 2021, 13(2): 95-116. 10.3233/AIS-210594 |
[1] | 李牧, 骆宇, 柯熙政. 基于调频连续波雷达的人体生命体征检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1978-1986. |
[2] | 韦修喜, 彭茂松, 黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1009-1017. |
[3] | 李大海, 詹美欣, 王振东. 基于多个改进策略的增强麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2845-2854. |
[4] | 贾鹤鸣, 力尚龙, 陈丽珍, 刘庆鑫, 吴迪, 郑荣. 基于混沌宿主切换机制的䲟鱼优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1759-1767. |
[5] | 陈亮, 汤显峰. 改进正余弦算法优化特征选择及数据分类[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1852-1861. |
[6] | 高兵, 郑雅, 秦静, 邹启杰, 汪祖民. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1201-1206. |
[7] | 段玉先, 刘昌云. 基于Sobol序列和纵横交叉策略的麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 36-43. |
[8] | 汤安迪, 韩统, 徐登武, 谢磊. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136. |
[9] | 李丽荣, 杨坤, 王培崇. 融合头脑风暴思想的教与学优化算法[J]. 计算机应用, 2020, 40(9): 2677-2682. |
[10] | 王松伟, 陈建华. 基于混沌映射的多因子认证密钥协商协议[J]. 计算机应用, 2018, 38(10): 2940-2944. |
[11] | 李娟, 游晓明, 刘升, 陈佳. 动态混沌蚁群系统及其在机器人路径规划中的应用[J]. 计算机应用, 2018, 38(1): 126-131. |
[12] | 吕立国, 季伟东. 结合质心思想和柯西变异策略的粒子群优化算法[J]. 计算机应用, 2017, 37(5): 1369-1375. |
[13] | 王行甫, 陈静, 王琳. 基于适应性动态步长的变异果蝇优化算法[J]. 计算机应用, 2016, 36(7): 1870-1874. |
[14] | 李俊, 汪冲, 李波, 方国康. 基于多策略协同作用的粒子群优化算法[J]. 计算机应用, 2016, 36(3): 681-686. |
[15] | 乔现伟, 乔蕾. 基于限域拟牛顿法的混沌类电磁学机制算法及其在路径寻优中的应用[J]. 计算机应用, 2015, 35(3): 696-699. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||