《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (6): 1978-1986.DOI: 10.11772/j.issn.1001-9081.2023060737
• 前沿与综合应用 • 上一篇
收稿日期:
2023-06-09
修回日期:
2023-08-31
接受日期:
2023-09-11
发布日期:
2023-09-20
出版日期:
2024-06-10
通讯作者:
骆宇
作者简介:
李牧(1972—),男,陕西西安人,高级工程师,硕士,主要研究方向:雷达信号处理、深度学习基金资助:
Mu LI1,2, Yu LUO1(), Xizheng KE1,2
Received:
2023-06-09
Revised:
2023-08-31
Accepted:
2023-09-11
Online:
2023-09-20
Published:
2024-06-10
Contact:
Yu LUO
About author:
LI Mu, born in 1972, M. S., senior engineer. His research interests include radar signal processing, deep learning.Supported by:
摘要:
针对现有雷达非接触生命体征检测精度低、实时性差等问题,提出一种基于调频连续波(FMCW)雷达的人体生命体征检测算法。首先,通过毫米波雷达获取生命体征信号;其次,利用改进的经验小波变换(EWT)算法,实现生命体征信号的自适应分解和重构,通过引入麻雀搜索算法(SSA)和模糊熵(FE)寻找频谱分割线的最优值;最后,通过改进频率插值的估计算法计算心率和呼吸频率。通过与医用重症监护仪进行对比实验验证所提算法的优越性和鲁棒性。实验结果表明,所提算法相较于小波变换(WT)算法、CEEMD(Complementary Ensemble Empirical Mode Decomposition)算法和VMD(Variational Mode Decomposition)算法,均方误差(MSE)分别减小了77.65、27.25和21.05,平均绝对百分比(MAPE)分别减小了7.33、4.33和3.42个百分点,实时性分别提高了0.72 s, 16.74 s和1.87 s。同时,利用所提算法也实现了对心率变异性(HRV)的检测。
中图分类号:
李牧, 骆宇, 柯熙政. 基于调频连续波雷达的人体生命体征检测算法[J]. 计算机应用, 2024, 44(6): 1978-1986.
Mu LI, Yu LUO, Xizheng KE. Human vital signs detection algorithm based on frequency modulated continuous wave radar[J]. Journal of Computer Applications, 2024, 44(6): 1978-1986.
特征参数 | 描述 | 参考值/ms | 异常范围/ms | 异常意义 |
---|---|---|---|---|
MeanRR | RR间期的平均值 | 600~1 000 | >1 000 | 心动过速 |
SDNN | NN间期的标准差 | 20~100 | <20 | 交感神经活性减弱 |
RMSSD | 相邻NN间期差值的均方根 | 20~50 | <20 | 副交感神经活性减弱 |
表1 HRV参数及其意义
Tab. 1 HRV parameters and their significance
特征参数 | 描述 | 参考值/ms | 异常范围/ms | 异常意义 |
---|---|---|---|---|
MeanRR | RR间期的平均值 | 600~1 000 | >1 000 | 心动过速 |
SDNN | NN间期的标准差 | 20~100 | <20 | 交感神经活性减弱 |
RMSSD | 相邻NN间期差值的均方根 | 20~50 | <20 | 副交感神经活性减弱 |
实验参数 | 数值 | 实验参数 | 数值 |
---|---|---|---|
雷达调制方式 | FMCW | 快时间采样频率 | 4 MHz |
起始频率 | 77 GHz | 慢时间采样频率 | 32 Hz |
带宽 | 4 GHz | 检测人数 | 1 |
斜率 | 70 MHz/μs | 受试者状态 | 平躺 |
表2 实验参数
Tab. 2 Experimental parameters
实验参数 | 数值 | 实验参数 | 数值 |
---|---|---|---|
雷达调制方式 | FMCW | 快时间采样频率 | 4 MHz |
起始频率 | 77 GHz | 慢时间采样频率 | 32 Hz |
带宽 | 4 GHz | 检测人数 | 1 |
斜率 | 70 MHz/μs | 受试者状态 | 平躺 |
算法 | MSE | MAPE/% | 运行时间/s |
---|---|---|---|
WT | 82.50 | 9.80 | 1.19 |
CEEMD | 32.10 | 6.80 | 17.21 |
VMD | 25.90 | 5.89 | 2.34 |
SSA-FE-EWT | 4.85 | 2.47 | 0.47 |
表3 3种分离算法性能对比
Tab. 3 Performance comparison of three separation algorithms
算法 | MSE | MAPE/% | 运行时间/s |
---|---|---|---|
WT | 82.50 | 9.80 | 1.19 |
CEEMD | 32.10 | 6.80 | 17.21 |
VMD | 25.90 | 5.89 | 2.34 |
SSA-FE-EWT | 4.85 | 2.47 | 0.47 |
距离参数/m | 准确度 | 均方根误差/bpm | 相关系数 |
---|---|---|---|
0.5 | 0.974 | 5.66 | 0.96 |
1.0 | 0.977 | 4.85 | 0.96 |
2.0 | 0.949 | 18.94 | 0.76 |
表4 不同距离条件下心率检测结果评估
Tab. 4 Evaluation of heart rate detection results under different distance conditions
距离参数/m | 准确度 | 均方根误差/bpm | 相关系数 |
---|---|---|---|
0.5 | 0.974 | 5.66 | 0.96 |
1.0 | 0.977 | 4.85 | 0.96 |
2.0 | 0.949 | 18.94 | 0.76 |
实验 | 算法 | MSE | MAPE/% | 运行 时间/s |
---|---|---|---|---|
实验1 | SSA-FE-EWT+ 改进频率插值的估计算法 | 4.36 | 2.61 | 0.58 |
实验2 | EWT+ 改进频率插值的估计算法 | 12.87 | 4.09 | 0.38 |
实验3 | SSA-FE-EWT | 7.92 | 3.11 | 0.47 |
实验4 | EWT | 19.52 | 4.97 | 0.27 |
表5 SSA-FE/改进频率插值的估计算法有效性验证
Tab. 5 Effectiveness validation of estimation algorithm with SSA-FE/improved frequency interpolation
实验 | 算法 | MSE | MAPE/% | 运行 时间/s |
---|---|---|---|---|
实验1 | SSA-FE-EWT+ 改进频率插值的估计算法 | 4.36 | 2.61 | 0.58 |
实验2 | EWT+ 改进频率插值的估计算法 | 12.87 | 4.09 | 0.38 |
实验3 | SSA-FE-EWT | 7.92 | 3.11 | 0.47 |
实验4 | EWT | 19.52 | 4.97 | 0.27 |
算法 | |||
---|---|---|---|
ECG | 758.2 | 25.49 | 21.72 |
本文算法 | 751.7 | 32.18 | 18.28 |
CEEMD | 804.7 | 53.64 | 26.72 |
WT | 811.8 | 64.42 | 43.25 |
VMD | 773.0 | 39.84 | 41.32 |
表6 HRV特征值对比
Tab.6 Comparison of HRV eigenvalues
算法 | |||
---|---|---|---|
ECG | 758.2 | 25.49 | 21.72 |
本文算法 | 751.7 | 32.18 | 18.28 |
CEEMD | 804.7 | 53.64 | 26.72 |
WT | 811.8 | 64.42 | 43.25 |
VMD | 773.0 | 39.84 | 41.32 |
1 | 张宁宁,陈艺.虚拟现实技术结合音乐干预对烧伤患者创面换药时疼痛程度及心率、血压的影响[J].解放军护理杂志,2020,37(11):78-80. |
ZHANG N N, CHEN Y. VR technique combined with music intervention on pain degree and heart rate,blood pressure of burn patients during wound dressing change[J]. Military Nursing, 2020, 37(11): 78-80. | |
2 | 西安理工大学. 一种基于雷达的生命体征检测方法:CN202110315023.1[P].2021-03-24. |
Xi’an University of Technology. A radar-based method for detecting vital signs: CN202110315023.1[P].2023-07-14. | |
3 | 胡锡坤,金添.基于自适应小波尺度选择的生物雷达呼吸与心跳分离方法[J].雷达学报,2016,5(5):462-469. |
HU X K, JIN T. Adaptive wavelet scale selection-based method for separating respiration and heartbeat in bio-radars [J]. Journal of Radar, 2016,5(5): 462-469. | |
4 | ZHU Z, YANG D, ZHAO R,et al.Vital sign signal extraction method based on permutation entropy and EMD algorithm for ultra-wideband radar[C]// Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering. Piscataway: IEEE, 2019: 1268-1273. |
5 | ZHAO J, HUANG J, JIA G,et al. Non-contact method of heart rate using a webcam[C]// Proceedings of the 2018 IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. Piscataway: IEEE, 2018: 1902-1906. |
6 | 田哲嘉.基于毫米波雷达的高可靠呼吸与心率提取算法的设计与实现[D]. 西安:西安理工大学,2021: 15-17. |
TIAN Z J. The design and implementation of the high-reliable breathing and heart rate extraction algorithm based on millimeter wave radar [D]. Xi’an: Xi’an University of Technology, 2021:15-17. | |
7 | 景会成,白英杰,曾凯,等.基于77 GHz毫米波雷达感知的生命体征检测方法[J].电子测量技术,2022,45(22):55-63. |
JING H C, BAI Y J, ZENG K, et al. Vital sign detection method based on 77 GHz mmwave radar perception [J]. Electronic Measurement Technology, 2022, 45(22): 55-63. | |
8 | SAMEERA J N, DROITCOUR A D, BORIC-LUBECKE O. Heart rate detection using single-channel Doppler radar system [C]// Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2022: 1953-1956. |
9 | EBRAHIM M, HEYDARI F, J-M REDOUTE, et al. Accurate heart rate detection from on-body continuous wave radar sensors using wavelet transform[C]// Proceedings of the 2018 IEEE SENSORS. Piscataway: IEEE, 2018: 1-4. |
10 | 高琳,曹建国.基于输气管道泄漏声发射信号特征的小波基构造研究[J].振动与冲击,2023,42(10):128-135. |
GAO L, CAO J G. Research on wavelet basis construction based on the characteristics of acoustic emission signals in gas pipe leakage [J]. Vibration and Impact, 2023, 42(10): 128-135. | |
11 | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
12 | ZHU Z, YANG D, ZHAO R,et al. Vital sign signal extraction method based on permutation entropy and EMD algorithm for ultra-wideband radar [C]// Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering. Piscataway: IEEE, 2019: 1268-1273. |
13 | 党春磊.基于CEEMD的定量自适应ECG去噪方法研究[D]. 合肥:合肥工业大学,2019: 28-30. |
DANG C L. Research on CEEMD-based self-adaptable ECG noise method [D].Hefei: Hefei University of Technology, 2019:28-30. | |
14 | 刘建昌,权贺,于霞,等.基于参数优化VMD和样本熵的滚动轴承故障诊断[J].自动化学报,2022,48(3):808-819. |
LIU J C, QUAN H, YU X,et al. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy[J]. Acta Automatica Sinica, 2022, 48(3): 808-819. | |
15 | WU K J, YANG C-L.Heart rate extraction with vmd algorithm in non-stationary clutter environment based on FMCW radar systems[C]// Proceedings of the 2021 IEEE International Symposium on Radio-Frequency Integration Technology.Piscataway: IEEE, 2021: 1-3. |
16 | GILLES J. Empirical wavelet transform[J].IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. |
17 | DAUBECHIES I, HEIL C. Ten lectures on wavelets[J]. Computer in Physics, 1992, 6(6): 697. |
18 | 薛建凯.一种新型的群智能优化技术的研究与应用——麻雀搜索算法[D].上海:东华大学,2020: 15-19. |
XUE J K. Research and application of a novel swarm intelligence optimization technique: sparrow search algorithm [D]. Shanghai: Donghua University, 2020:15-19. | |
19 | WANG Z, CHEN H, YUAN Z, et al. Multi-scale fuzzy entropy-based feature selection[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(9): 3248-3262. |
20 | 吕鑫,慕晓冬,张钧.基于改进麻雀搜索算法的多阈值图像分割[J].系统工程与电子技术,2021,43(2):318-327. |
LYU X, MU X D, ZHANG J. Multi-threshold image segmentation based on improved sparrow search algorithm [J]. Systems Engineering and Electronics, 2021, 43(2): 318-327. | |
21 | PETROVIĆ V L, JANKOVIĆ M, LUPŠIĆ A V, et al. High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave doppler radar [J].IEEE Access. 2019,7:74721-74733. |
22 | 石丁,乔嘉豪,李瑞瑶,等.基于生物雷达的灾后受挤压伤员生命状态识别方法研究[J].医疗卫生装备,2022,43(5):1-7,13. |
SHI D, QIAO J H, LI R Y,et al. Bio-radar-based method for identifying life state of post-disaster crush injury patient [J]. Chinese Medical Equipment Journal, 2022,43(5): 1-7, 13. | |
23 | 李陈璇,丁晓梅,朱红军.心率变异性分析在心血管疾病中应用的研究进展[J].中西医结合心脑血管病杂志,2020,18(1):82-84. |
LI C X, DING X M, ZHU H J. Research progress on the application of heart rate variability analysis in cardiovascular diseases[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2020,18(1):82-84. | |
24 | 曹文静,张金萍,马建新,等.心率变异性临床应用的研究进展[J].实用心电学杂志,2022,31(2):137-143. |
CAO W J, ZHANG J P, MA J X, et al. Research progress in clinical application of heart rate variability [J]. Journal of Practical Electrocardiology, 2022, 31(2): 137-143. | |
25 | SUN J, YU Y, XIN L.Research on path planning of AGV based on improved ant colony optimization algorithm[C]// Proceedings of the 2021 33rd Chinese Control and Decision Conference.Piscataway: IEEE, 2021:7567-7572. |
26 | ANTUNES A R, SILVA J P, BRAGA C A, et al. Feature selection optimization for heart rate variability[C]// Proceedings of the 2023 11th International Symposium on Digital Forensics and Security. Piscataway: IEEE, 2023:1-6. |
27 | 方杨颖.心率变异性在急性冠脉综合征中的应用研究进展[J].现代医药卫生,2023,39(6):1011-1014. |
FANG Y Y. Application of heart rate variability in acute coronary syndrome [J]. Journal of Modern Medicine & Health, 2023, 39(6): 1011-1014. |
[1] | 韦修喜, 彭茂松, 黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1009-1017. |
[2] | 李大海, 詹美欣, 王振东. 基于多个改进策略的增强麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2845-2854. |
[3] | 张玉杰, 王帆. 基于改进麻雀搜索算法的照明控制优化[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 835-841. |
[4] | 高兵, 郑雅, 秦静, 邹启杰, 汪祖民. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1201-1206. |
[5] | 段玉先, 刘昌云. 基于Sobol序列和纵横交叉策略的麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 36-43. |
[6] | 汤安迪, 韩统, 徐登武, 谢磊. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136. |
[7] | 李朝, 兰海, 魏宪. 基于注意力的毫米波-激光雷达融合目标检测[J]. 计算机应用, 2021, 41(7): 2137-2144. |
[8] | 杨敏 刘光远 温万惠. 两类情感状态下心电与心率变异性信号的非线性分析[J]. 计算机应用, 2012, 32(10): 2963-2965. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||