《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (6): 1978-1986.DOI: 10.11772/j.issn.1001-9081.2023060737

• 前沿与综合应用 • 上一篇    

基于调频连续波雷达的人体生命体征检测算法

李牧1,2, 骆宇1(), 柯熙政1,2   

  1. 1.西安理工大学 自动化与信息工程学院, 西安 710048
    2.西安市无线光通信与网络研究重点实验室(西安理工大学), 西安 710048
  • 收稿日期:2023-06-09 修回日期:2023-08-31 接受日期:2023-09-11 发布日期:2023-09-20 出版日期:2024-06-10
  • 通讯作者: 骆宇
  • 作者简介:李牧(1972—),男,陕西西安人,高级工程师,硕士,主要研究方向:雷达信号处理、深度学习
    柯熙政(1962—),男,陕西临潼人,教授,博士,主要研究方向:无线光通信。
  • 基金资助:
    西安市科技计划项目(2020KJRC0083)

Human vital signs detection algorithm based on frequency modulated continuous wave radar

Mu LI1,2, Yu LUO1(), Xizheng KE1,2   

  1. 1.Faculty of Automation and Information Engineering,Xi’an University of Technology,Xi’an Shaanxi 710048,China
    2.Xi’an Key Laboratory of Wireless Optical Communication and Network Research (Xi’an University of Technology),Xi'an Shaanxi 710048,China
  • Received:2023-06-09 Revised:2023-08-31 Accepted:2023-09-11 Online:2023-09-20 Published:2024-06-10
  • Contact: Yu LUO
  • About author:LI Mu, born in 1972, M. S., senior engineer. His research interests include radar signal processing, deep learning.
    KE Xizheng, born in 1962, Ph. D., professor. His research interests include wireless optical communications.
  • Supported by:
    Xi’an Science and Technology Plan Project(2020KJRC0083)

摘要:

针对现有雷达非接触生命体征检测精度低、实时性差等问题,提出一种基于调频连续波(FMCW)雷达的人体生命体征检测算法。首先,通过毫米波雷达获取生命体征信号;其次,利用改进的经验小波变换(EWT)算法,实现生命体征信号的自适应分解和重构,通过引入麻雀搜索算法(SSA)和模糊熵(FE)寻找频谱分割线的最优值;最后,通过改进频率插值的估计算法计算心率和呼吸频率。通过与医用重症监护仪进行对比实验验证所提算法的优越性和鲁棒性。实验结果表明,所提算法相较于小波变换(WT)算法、CEEMD(Complementary Ensemble Empirical Mode Decomposition)算法和VMD(Variational Mode Decomposition)算法,均方误差(MSE)分别减小了77.65、27.25和21.05,平均绝对百分比(MAPE)分别减小了7.33、4.33和3.42个百分点,实时性分别提高了0.72 s, 16.74 s和1.87 s。同时,利用所提算法也实现了对心率变异性(HRV)的检测。

关键词: 毫米波雷达, 经验小波变换, 生命体征, 心率变异性, 麻雀搜索算法

Abstract:

For problems such as low accuracy and poor real-time detection of existing radar non-contact vital signs detection, a human vital signs detection algorithm based on Frequency Modulated Continuous Wave (FMCW) radar was proposed. Firstly,the vital signs signal was obtained through the millimeter wave radar. Then, the adaptive decomposition and reconstruction of the vital signs signal were achieved using the improved Empirical Wavelet Transformation (EWT) algorithm. The best value of the spectrum division line was found by introducing Sparrow Search Algorithm (SSA) and Fuzzy Entropy (FE). Finally,the heart rate and respiratory rate were calculated using the estimation algorithm with improved frequency interpolation. The superiority and robustness of the proposed algorithm were verified through comparative experiments with a medical critical care monitor. The experimental results showed that compared with Wavelet Transform (WT) algorithm, Complementary Ensemble Empirical Mode Decomposition (CEEMD) algorithm and Variational Mode Decomposition (VMD) algorithm, the Mean Square Error (MSE) was reduced by 77.65, 27.25 and 21.05, the Mean Absolute Percentage (MAPE) was reduced by 7.33, 4.33 and 3.42 percentage points, and the real-time performance was improved by 0.72 s, 16.74 s and 1.87 s. At the same time, the proposed algorithm also achieves the detection of Heart Rate Variability (HRV).

Key words: millimeter-wave radar, Empirical Wavelet Transform (EWT), vital signs, Heart Rate Variability (HRV), Sparrow Search Algorithm (SSA)

中图分类号: