[1] 王世刚,孙爱朦,赵文婷,等. 基于时空兴趣点的单人行为及交互行为识别[J]. 吉林大学学报(工学版), 2015, 45(1):304-308.(WANG S G, SUN A M, ZHAO W T, et al. Single and interactive human behavior recognition algorithm based on spatio-temporal interest point[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1):304-308.) [2] GAVRILA D M, DAVIS L S. 3-D model-based tracking of humans in action:a multi-view approach[C]//Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 1996:73-80. [3] 赵海勇,刘志镜,张浩. 基于轮廓特征的人体行为识别[J]. 光电子·激光, 2010, 21(10):1547-1551. (ZHAO H Y, LIU Z J, ZHANG H. Human action recognition based on image contour[J]. Journal of Photoelectron·Laser, 2010, 21(10):1547-1551) [4] 韩磊,李军峰,贾云得. 基于时空单词的双人交互行为识别方法[J].计算机学报, 2010, 33(4):776-784. (HAN L, LI J F, JIA Y D. Human interaction recognition method using spatio-temporal words[J]. Chinese Journal of Computers, 2010, 33(4):776-784.) [5] LI N, CHENG X, GUO H, et al. Recognizing human interactions by genetic algorithm-based random forest spatio-temporal correlation[J]. Pattern Analysis and Applications, 2016, 19(1):267-282. [6] YUN K, HONORIO J, CHATTOPADHYAY D, et al. Two-person interaction detection using body-pose features and multiple instance learning[C]//Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2012:28-35. [7] SLAMA R, WANNOUS H, DAOUDI M, et al. Accurate 3D action recognition using learning on the Grassmann manifold[J]. Pattern Recognition, 2015, 48(2):556-567. [8] GHORBEL E, BOUTTEAU R, BOONAERT J, et al. 3D real-time human action recognition using a spline interpolation approach[C]//Proceedings of the 2015 International Conference on Image Processing Theory, Tools and Applications. Piscataway:IEEE, 2015:61-66. [9] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:568-576. [10] LI C, ZHONG Q, XIE D, et al. Skeleton-based action recognition with convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Multimedia & Expo Workshops. Piscataway:IEEE, 2017:597-600. [11] LIU J, WANG G, DUAN L, et al. Skeleton-based human action recognition with global context-aware attention LSTM networks[J]. IEEE Transactions on Image Processing, 2018, 27(4):1586-1599. [12] KE Q, BENNAMOUN M, AN S, et al. Learning clip representations for skeleton-based 3D action recognition[J]. IEEE Transactions on Image Processing, 2018, 27(6):2842-2855. [13] LIU J, SHAHROUDY A, XU D, et al. Spatio-temporal LSTM with trust gates for 3D human act in recognition[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9907. Berlin:Springer, 2016:816-833. [14] LI C, ZHONG Q, XIE D, et al. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation[EB/OL].[2019-03-20].http://arxiv.org/pdf/1804.06055. [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-10].https://arxiv.org/pdf/1409.1556.pdf. |