[1] PILLOS A, ALGHAMIDI K, ALZAMEL N, et al. A real-time environmental sound recognition system for the Android OS[EB/OL].[2019-02-20]. http://www.cs.tut.fi/sgn/arg/dcase2016/documents/workshop/Pillos-DCASE2016workshop.pdf. [2] BRIGGS F, RAICH R, FERN X Z. Audio classification of bird species:a statistical manifold approach[C]//Proceedings of the 9th IEEE International Conference on Data Mining. Piscataway:IEEE, 2009:51-60. [3] LOGAN B. Mel-frequency cepstral coefficients for music modeling[EB/OL].[2019-02-20]. https://www.researchgate.net/publication/2552483_Mel_Frequency_Cepstral_Coefficients_for_Music_Modeling. [4] CHEN J, KAM A H, ZHANG J, et al. Bathroom activity monitoring based on sound[C]//Proceedings of the 2005 International Conference on Pervasive Computing, LNCS 3468. Berlin:Springer, 2009:47-61. [5] 李玲俐.基于MFCC-SVM和交叉验证方法的环境音分类[J].计算机与现代化,2016(8):36-39.(LI L L. Environmental sound classification based on MFCC-SVM and cross validation method[J]. Computer and Modernization, 2016(8):36-39.) [6] 郑继明,魏国华,吴渝.有效的基于内容的音频特征提取方法[J].计算机工程与应用,2009,45(12):131-133,137.(ZHENG J M, WEI G H, WU Y. New effective method on content based audio feature extraction[J]. Computer Engineering and Applications, 2009, 45(12):131-133, 137.) [7] 付炜,杨洋.基于卷积神经网络和随机森林的音频分类方法[J].计算机应用,2018,38(S2):58-62.(FU W, YANG Y. Audio classification method based on convolutional neural network and random forest[J]. Journal of Computer Applications, 2018, 38(S2):58-62.) [8] 余清清.噪音环境下基于时-频特征的生态环境声音的分类[J].计算机与数字工程,2017,45(1):8-14,106.(YU Q Q. Eco-environmental sounds classification with time-frequency features under noise conditions[J]. Computer and Digital Engineering, 2017, 45(1):8-14, 106.) [9] 芮瑞,鲍长春.噪声环境下的窄带音频信号快速分类方法[J].计算机工程与应用,2011,47(16):22-25.(RUI R, BAO C C. Fast classification method of narrow-band audio signals under noisy environment[J]. Computer Engineering and Applications, 2011, 47(16):22-25.) [10] PICZAK K J. Environmental sound classification with convolutional neural networks[C]//Proceedings of the IEEE 25th International Workshop on Machine Learning for Signal Processing. Piscataway:IEEE, 2015:1-6. [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2012:1097-1105. [12] KUMAR A, KHADKEVICH M, FUGEN C. Knowledge transfer from weakly labeled audio using convolutional neural network for sound events and scenes[EB/OL].[2019-03-05]. https://arxiv.org/pdf/1711.01369.pdf. [13] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-40. [14] 刘亚冲,唐智灵.基于Softmax回归的通信辐射源特征分类识别方法[J].计算机工程,2018,44(2):98-102.(LIU Y C, TANG Z L. Classification and identification method of communication radiation source feature based on softmax regression[J]. Computer Engineering, 2018, 44(2):98-102.) [15] CHEN T, GUESTRIN C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:785-794. [16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-03-05]. https://arxiv.org/pdf/1409.1556.pdf. [17] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-03-05]. https://arxiv.org/pdf/1502.03167.pdf. [18] PICZAK K J. ESC:dataset for environmental sound classification[C]//Proceedings of the 23rd ACM International Conference on Multimedia. New York:ACM, 2015:1015-1018. [19] SAILOR H B, PATIL H A. Filterbank learning using convolutional restricted Boltzmann machine for speech recognition[C]//Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE, 2016:5895-5899. [20] TOKOZUME Y, USHIKU Y, HARADA T. Learning from between-class examples for deep sound recognition[EB/OL].[2019-03-05]. https://arxiv.org/pdf/1711.10282.pdf. [21] TAK R N, AGRAWAL D M, PATIL H A. Novel phase encoded mel filterbank energies for environmental sound classification[C]//Proceedings of the 2017 International Conference on Pattern Recognition and Machine Intelligence, LNCS 10597. Cham:Springer, 2017:317-325. |