[1] TORTORA D, PANARA V, MATTEI P A, et al. Comparing 3T T1-weighted sequences in identifying hyperintense punctate lesions in preterm neonates[J]. American Journal of Neuroradiology, 2015, 36(3):581-586. [2] KERSBERGEN K J, BENDERS M J N L, GROENENDAAL F, et al. Different patterns of punctate white matter lesions in serially scanned preterm infants[J]. PloS One, 2014, 9(10):e108904. [3] DYET L E, KENNEA N, COUNSELL S J, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment[J]. Pediatrics, 2006, 118(2):536-548. [4] CORNETTE L G, TANNER S F, RAMENGHI L A, et al. Magnetic resonance imaging of the infant brain:anatomical characteristics and clinical significance of punctate lesions[J]. Archives of Disease in Childhood-Fetal and Neonatal Edition, 2002, 86(3):F171-F177. [5] CHENG I, HAJARI N, FIROUZMANESH A, et al. White matter injury detection in neonatal MRI[C]//Proceedings of the Medical Imaging 2013:Computer-Aided Diagnosis, SPIE 8670. Bellingham, WA:SPIE, 2013:86702L. [6] CHENG I, MILLER S P, DUERDEN E G, et al. Stochastic process for white matter injury detection in preterm neonates[J]. NeuroImage:Clinical, 2015, 7:622-630. [7] MUKHERJEE S, CHENG I, MILLER S, et al. A fast segmentation-free fully automated approach to white matter injury detection in preterm infants[J]. Medical and Biological Engineering and Computing, 2019, 57(1):71-87. [8] MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767. [9] JIAO Z, GAO X, WANG Y, et al. A deep feature based framework for breast masses classification[J]. Neurocomputing, 2016, 197:221-231. [10] HU Y, LI J, JIAO Z. Mammographic mass detection based on saliency with deep features[C]//Proceedings of the 2016 International Conference on Internet Multimedia Computing and Service. New York:ACM, 2016:292-297. [11] JIAO Z, GAO X, WANG Y, et al. A parasitic metric learning net for breast mass classification based on mammography[J]. Pattern Recognition, 2018, 75:292-301. [12] YANG D, WANG Y, JIAO Z. Asymmetry analysis with sparse autoencoder in mammography[C]//Proceedings of the 2016 International Conference on Internet Multimedia Computing and Service. New York:ACM, 2016:287-291. [13] JIAO Z, GAO X, WANG Y. Deep convolutional neural networks for mental load classification based on EEG data[J]. Pattern Recognition, 2018, 76:582-595. [14] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [15] HAVAEI M, DAVY A, WARDE-FARLEYC D. Brain tumor segmentation with deep neural networks[J]. Medical Image Analysis, 2017, 35:18-31. [16] GUERRERO R, QIN C, OKTAY O, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks[J]. NeuroImage:Clinical, 2018, 17:918-934. [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [18] ZHANG Z, LIU Q, WANG Y. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):749-753. [19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2999-3007. [20] KRÄHENBÜHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[C]//Proceedings of the 25th Annual Conference on Neural Information Processing Systems. New York:Curran Associates, 2011:109-117. [21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2980-2988. [22] LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. New York:International Machine Learning Society, 2001:282-289. [23] ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1529-1537. [24] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2019-02-20]. http://de.arxiv.org/pdf/1412.6980. [25] SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems. New York:Curran Associates, 2012:2951-2959. [26] HE K, GKIOXARI G, DOLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2980-2988. |