[1] ZHU X, GOLDBERG A B. Introduction to Semi-Supervised Learning[M]. San Rafael:Morgan and Claypool Publishers, 2009:130. [2] ZHANG Z, SCHULLER B. Semi-supervised learning helps in sound event classification[C]//Proceedings of the 37th IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway:IEEE, 2012:333-336. [3] ZHU X. Semi-supervised learning[C]//Proceedings of the 2011 International Joint Conference on Artificial Intelligence. Menlo Park:AAAI, 2011:1142-1147. [4] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7:2399-2434. [5] JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the 1999 International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc., 1999:200-209. [6] CHAPELLE O, CHI M, ZIEN A. A continuation method for semi-supervised SVMs[C]//Proceedings of the 2006 Twenty-Third International Conference on Machine Learning. New York:ACM, 2006:185-192. [7] LI Y, ZHOU Z. Towards making unlabeled data never hurt[C]//Proceedings of the 28th International Conference on Machine Learning. Madison:Omnipress, 2011:1081-1088. [8] ZHANG D, JIAO L, BAI X, et al. A robust semi-supervised SVM via ensemble learning[J]. Applied Soft Computing, 2018, 65:632-643. [9] ZHOU Z. When semi-supervised learning meets ensemble learning[C]//Proceedings of the 8th International Workshop on Multiple Classifier Systems, LNCS 5519. Berlin:Springer, 2009:529-538. [10] PLUMPTON C O, KUNCHEVA L I, OOSTERHOF N N, et al. Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data[J]. Pattern Recognition, 2012, 45(6):2101-2108. [11] WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained K-means clustering with background knowledge[C]//Proceedings of the 8th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc., 2001:577-584. [12] BASU S, BANERJEE A, MOONEY R J. Semi-supervised clustering by seeding[C]//Proceedings of the 9th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc., 2002:27-34. [13] DING S, JIA H, ZHANG L, et al. Research of semi-supervised spectral clustering algorithm based on pairwise constraints[J]. Neural Computing and Applications, 2014, 24(1):211-219. [14] PELLEG D, BARAS D. K-means with large and noisy constraint sets[C]//Proceedings of the 18th European Conference on Machine Learning. Berlin:Springer, 2007:674-682. [15] ZENG H, CHEUNG Y. Semi-supervised maximum margin clustering with pairwise constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(5):926-939. [16] 何萍,徐晓华,陆林,等.双层随机游走半监督聚类[J].软件学报,2014,25(5):997-1013.(HE P, XU X H, LU L, et al. Semi-supervised clustering via two-level random walk[J]. Journal of Software, 2014, 25(5):997-1013.) [17] STEINLEY D, BRUSCO M J. K-means clustering and mixture model clustering:reply to McLachlan (2011) and Vermunt (2011)[J]. Psychological Methods, 2011, 16(1):89-92. [18] HONG Y, KWONG S. Learning assignment order of instances for the constrained K-means clustering algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009, 39(2):568-574. [19] LI K, ZHANG C, CAO Z. Semi-supervised kernel clustering algorithm based on seed set[C]//Proceedings of the 2009 Asia-Pacific Conference on Information Processing. Piscataway:IEEE, 2009:169-172. [20] GU L, SUN F. Two novel kernel-based semi-supervised clustering methods by seeding[C]//Proceedings of the 2009 Chinese Conference on Pattern Recognition. Piscataway:IEEE, 2009:1-5. [21] 尹玉,詹永照,姜震.伪标签置信选择的半监督集成学习视频语义检测[J].计算机应用,2019,39(8):2204-2209.(YIN Y, ZHAN Y Z, JIANG Z. Semi-supervised integrated learning video semantic detection with false label confidence selection[J]. Journal of Computer Applications, 2019, 39(8):2204-2209.) |