[1] RIVEIRO M, PALLOTTA G, VESPE M. Maritime anomaly detection:a review[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2018, 8(5):e1266. [2] LAXHAMMAR R, FALKMAN G, SVIESTINS E. Anomaly detection in sea traffic-a comparison of the gaussian mixture model and the kernel density estimator[C]//Proceedings of the 12th International Conference on Information Fusion. Piscataway:IEEE, 2009:756-763. [3] 甄荣,邵哲平,潘家财,等.基于统计学理论的船舶轨迹异常识别[J].集美大学学报(自然科学版),2015,20(3):193-197.(ZHEN R, SHAO Z P, PAN J C, et al. A study on the identification of abnormal ship trajectory based on statistic theories[J]. Journal of Jimei University (Nature Science), 2015, 20(3):193-197.) [4] 刘磊,初秀民,蒋仲廉,等.基于KNN的船舶轨迹分类算法[J].大连海事大学学报,2018,44(3):15-21.(LIU L, CHU X M, JIANG Z L, et al. Ship trajectory classification algorithm based on KNN[J]. Journal of Dalian Maritime University, 2018, 44(3):15-21.) [5] KRAUS P, MOHRDIECK C, SCHWENKER F. Ship classification based on trajectory data with machine learning methods[C]//Proceedings of the 19th International Radar Symposium. Piscataway:IEEE, 2018:1-10. [6] 韩昭蓉,黄廷磊,任文娟,等.基于Bi-LSTM模型的轨迹异常点检测算法[J].雷达学报,2019,8(1):36-43.(HAN Z R, HUANG T L, REN W J, et al. Trajectory outlier detection algorithm based on Bi-LSTM model[J]. Journal of Radars, 2019, 8(1):36-43.) [7] LJUNGGREN H. Using deep learning for classifying ship trajectories[C]//Proceedings of 21st International Conference on Information Fusion. Piscataway:IEEE, 2018:2158-2164. [8] JIANG X, de SOUZA E N, LIU X, et al. Partition-wise recurrent neural networks for point-based AIS trajectory classification[C]//Proceedings of 2017 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Amsterdam:Elsevier, 2017:529-534. [9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [10] MAO S, TU E, ZHANG G, et al. An Automatic Identification System (AIS) database for maritime trajectory prediction and data mining[M]//CAO J, CAMBRIA E, LENDASSE A, et al. Proceedings of ELM-2016, PALO 9. Cham:Springer, 2018:241-257. [11] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [13] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7132-7141. [14] Marinecadastre. Vessel traffic data[EB/OL].[2019-04-28]. https://marinecadastre.gov/ais/. [15] KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2018, 6:1662-1669. [16] KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks, 2019, 116:237-245. [17] LIU C L, HSAIO W H, TU Y C. Time series classification with multivariate convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 66(6):4788-4797. [18] ZHENG Y, LIU Q, CHEN E, et al. Time series classification using multi-channels deep convolutional neural networks[C]//Proceedings of the 2014 International Conference on Web-Age Information Management, LNC 8485. Cham:Springer, 2014:298-310. [19] CHEN Z, XUE J, WU C, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161:69-76. [20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc. 2012:1097-1105. |