[1] HASSABIS D, KUMARAN D, SUMMERFIELD C, et al. Neuroscience-inspired artificial intelligence[J]. Neuron, 2017, 95(2):245-258. [2] 邓昀,李朝庆,程小辉.基于物联网的智能家居远程无线监控系统设计[J].计算机应用,2017,37(1):159-165.(DENG J, LI C Q, CHENG X H. Design of remote wireless monitoring system for smart home based on Internet of things[J]. Journal of Computer Applications, 2017, 37(1):159-165.) [3] 梁光胜,曾华荣.基于ARM的智能视频监控人脸检测系统的设计[J].计算机应用,2017,37(S2):301-305.(LIANG G S, ZENG H R. Design of intelligent video surveillance face detection system based on ARM[J]. Journal of Computer Applications, 2017, 37(S2):301-305.) [4] GUAN Z, MIAO Q, SI W, et al. Research on highway intelligent monitoring and warning system based on wireless sensor network[J]. Applied Mechanics and Materials, 2018, 876:173-176. [5] LIU Z, JIANG S, ZHOU P, et al. A participatory urban traffic monitoring system:the power of bus riders[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10):2851-2864. [6] 刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学报,2018,41(1):1-27.(LIU Q, ZHAI J W, ZHANG Z Z, et al. A summary of deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1):1-27.) [7] REN R, HUNG T, TAN K C. A generic deep-learning-based approach for automated surface inspection[J]. IEEE Transactions on Cybernetics, 2018, 48(3):929-940. [8] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [9] LAN Z, ZHU Y, HAUPTMANN A G, et al. Deep local video feature for action recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2017:1219-1225. [10] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:4489-4497. [11] SONG S, LAN C, XING J, et al. An end-to-end spatio-temporal attention model for human action recognition from skeleton data[EB/OL].[2019-04-01]. https://arxiv.org/pdf/1611.06067.pdf. [12] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[EB/OL].[2019-04-01]. https://arxiv.org/pdf/1602.07261v1.pdf. [13] LAPTEV I. On space-time interest points[J]. International Journal of Computer Vision, 2005, 64(2/3):107-123. [14] WANG H, KLÄSER A, SCHMID C, et al. Action recognition by dense trajectories[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2011:3169-3176. [15] WANG H, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2013:3551-3558. [16] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:1725-1732. [17] LI Y, LAN C, XING J, et al. Online human action detection using joint classification-regression recurrent neural networks[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham:Springer, 2016:203-220. [18] YANG K, QIAO P, LI D, et al. Exploring temporal preservation networks for precise temporal action localization[EB/OL].[2019-04-01]. https://arxiv.org/pdf/1708.03280.pdf. [19] LIN S, RUNGER G C. GCRNN:group-constrained convolutional recurrent neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10):4709-4718. [20] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. |