[1] 陈亮,龚俭,徐选.应用层协议识别算法综述[J].计算机科学,2007,34(7):73-75.(CHEN L, GONG J, XU X. A survey of application-level protocol identification algorithm[J]. Computer Science, 2007, 34(7):73-75.) [2] 王一鹏,云晓春,张永铮,等.基于主动学习和SVM方法的网络协议识别技术[J].通信学报,2013(10):135-142.(WANG Y P, YUN X C, ZHANG Y Z, et al. Network protocol identification based on active learning and SVM algorithm[J]. Journal on Communications, 2013, 34(10):135-142.) [3] 邹腾宽,汪钰颖,吴承荣.网络背景流量的分类与识别研究综述[J].计算机应用,2019,39(3):802-811.(ZOU T K, WANG Y Y, WU C R. Review of network background traffic classification and identification[J]. Journal of Computer Applications, 2019, 39(3):802-811.) [4] JOE T, ELIOT L, ALLISON M, et al. Service name and transport protocol port number registry[EB/OL].[2019-09-23]. https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml. [5] 张蕾,崔勇,刘静,等.机器学习在网络空间安全研究中的应用[J].计算机学报,2018,41(9):1943-1975.(ZHANG L, CUI Y, LIU J, et al. Application of machine learning in cyberspace security research[J]. Chinese Journal of Computers, 2018, 41(9):1943-1975.) [6] 余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804.(YU K, JIA L, CHEN Y Q, et al. Deep learning:yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9):1799-1804.) [7] BENGIO Y. Learning deep architectures for AI[M]//Foundations and Trends in Machine Learning. Hanover, MA:Now Publishers Inc., 2009, 2(1):1-127. [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [9] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals, and Systems, 1989, 2(4):303-314. [10] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.(ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.) [11] WANG Z. The applications of deep learning on traffic identification[EB/OL].[2019-04-14]. https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf. [12] JAIN A V. Network traffic identification with convolutional neural networks[C]//Proceedings of the IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress. Piscataway:IEEE, 2018:1001-1007. [13] WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking. Piscataway:IEEE, 2017:712-717. [14] MA R, QIN S. Identification of unknown protocol traffic based on deep learning[C]//Proceedings of the 3rd IEEE International Conference on Computer and Communications. Piscataway:IEEE, 2017:1195-1198. [15] 陈雪娇,王攀,俞家辉.基于卷积神经网络的加密流量识别方法[J].南京邮电大学学报(自然科学版),2018,38(6):36-41.(CHEN X J, WANG P, YU J H. CNN based encrypted traffic identification method[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(6):36-41) [16] 叶松.基于现代网络的深度学习应用协议识别技术研究与实现[J].软件导刊,2018,17(10):194-199.(YE S. Research and implementation of deep learning application protocol recognition technology based on modern network[J]. Software Guide, 2018, 17(10):194-199.) [17] REN J, WANG Z. A novel deep learning method for application identification in wireless network[J]. China Communications, 2018, 15(10):73-83. [18] 熊刚,孟姣,曹自刚,等.网络流量分类研究进展与展望[J].集成技术,2012,1(1):32-42.(XIONG G, MENG J, CAO Z G, et al. Research progress and prospects of network traffic classification[J]. Journal of Integration Technology, 2012, 1(1):32-42.) [19] BARAKAT C, THIRAN P, IANNACCONE G, et al. Modeling Internet backbone traffic at the flow level[J]. IEEE Transactions on Signal Processing, 2003, 51(8):2111-2124. [20] 张凤荔,周洪川,张俊娇,等.基于改进凝聚层次聚类的协议分类算法[J].计算机工程与科学,2017,39(4):796-803.(ZHANG F L, ZHOU H C, ZHANG J J, et al. A protocol classification algorithm based on improved AGENS[J]. Computer Engineering and Science, 2017, 39(4):796-803.) [21] 冯文博,洪征,吴礼发,等.网络协议识别技术综述[J].计算机应用,2019,39(12):3604-3614.(FENG W B, HONG Z, WU L F, et al. Review of network protocol recognition techniques[J]. Journal of Computer Applications, 2019, 39(12):3604-3614.) [22] 李芳馨,刘嘉勇.网络数据流还原重组技术研究[J].通信技术,2011,44(7):113-114,117.(LI F X, LIU J Y. Study on reverting and restructuring of network data stream[J]. Communications Technology, 2011, 44(7):113-114, 117.) [23] HARRIS D, HARRIS S. Digital Design and Computer Architecture:2nd Edition[M]. San Francisco, CA:Morgan Kaufmann, 2012:129-133. [24] CELIK Z B, WALLS R J, MCDANIEL P, et al. Malware traffic detection using tamper resistant features[C]//Proceedings of the 2015 IEEE Military Communications Conference. Piscataway:IEEE, 2015:330-335. [25] LIPPMANN R, CUNNINGHAM R K, FRIED D J, et al. Results of the DARPA 1998 offline intrusion detection evaluation[EB/OL].[2019-04-14]. https://www.researchgate.net/publication/221427437_Results_of_the_DARPA_1998_Offline_Intrusion_Detection_Evaluation. [26] CHOLLET F. Keras:deep learning for humans[EB/OL].[2019-04-14]. https://github.com/fchollet/keras. [27] ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow:large-scale machine learning on heterogeneous distributed system[EB/OL].[2019-04-14]. https://arxiv.org/pdf/1603.04467.pdf. [28] 王勇,周慧怡,俸皓,等.基于深度卷积神经网络的网络流量分类方法[J].通信学报,2018,39(1):14-23.(WANG Y, ZHOU H Y, FENG H, et al. Network traffic classification method basing on CNN[J]. Journal on Communications, 2018, 39(1):14-23.) |