[1] WANG X, XU L, ZHANG Y, et al. A novel hybrid method for robust infrared target detection[J]. KSII Transactions on Internet and Information Systems, 2017, 11(10):5006-5022. [2] LEE Y, CHAN Y, FU L, et al. Near-infrared-based nighttime pedestrian detection using grouped part models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):1929-1940. [3] 刘峰,王思博,王向军,等.多特征级联的低能见度环境红外行人检测方法[J].红外与激光工程,2018,47(6):127-134.(LIU F, WANG S B, WANG X J, et al. Infrared pedestrian detection method in low visibility environment based on multi feature association[J]. Infrared and Laser Engineering, 2018, 47(6):127-134.) [4] KIM D S, KIM M, KIM B S, et al. Histograms of local intensity differences for pedestrian classification in far-infrared images[J]. Electronics Letters, 2013, 49(4):258-260. [5] SUN J, FAN G, YU L, et al. Concave-convex local binary features for automatic target recognition in infrared imagery[J]. EURASIP Journal on Image and Video Processing, 2014, 2014:Article No. 23. [6] 谢志华,伍世虔,方志军.LBP与鉴别模式结合的热红外人脸识别[J].中国图象图形学报,2012,17(6):707-711.(XIE Z H, WU S Q, FANG Z J. Infrared face recognition using LBP and discrimination patterns[J]. Journal of Image and Graphics, 2012, 17(6):707-711.) [7] 云廷进,郭永彩,高潮.基于图像局部区域梯度特征描述的红外人体识别算法[J].光学技术,2008,34(3):441-444,448.(YUN T J, GUO Y C, GAO C. Human recognition algorithm in infrared images based on local gradient feature descriptor[J]. Optical Technique, 2008, 34(3):441-444, 448.) [8] GE J, LUO Y, TEI G. Real-time pedestrian detection and tracking at nighttime for driver-assistance systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(2):283-298. [9] LIN Y C, CHAN Y M, CHUANG L C, et al. Near-infrared based nighttime pedestrian detection by combining multiple features[C]//Proceedings of the 14th IEEE International Conference on Intelligent Transportation Systems. Piscataway:IEEE, 2011:1549-1554. [10] BREHAR R, NEDEVSCHI S. Pedestrian detection in infrared images using HOG, LBP, gradient magnitude and intensity feature channels[C]//Proceedings of the 17th IEEE International Conference on Intelligent Transportation Systems. Piscataway:IEEE, 2014:1669-1674. [11] 宋丹,唐林波,赵保军.基于仿射梯度方向直方图特征的目标识别算法[J].电子与信息学报,2013,35(6):1428-1434.(SONG D, TANG L B, ZHAO B J. The object recognition algorithm based on affine histogram of oriented gradient[J]. Journal of Electronics and Information Technology, 2013, 35(6):1428-1434.) [12] 胡庆新,王磊.基于多特征的红外图像行人检测[J].电子设计工程,2016,24(4):182-185,189.(HU Q X, WANG L. Pedestrian detection in infrared images based on multi-features[J]. Electronic Design Engineering, 2016, 24(4):182-185, 189.) [13] 吴燕茹,程咏梅,赵永强,等.利用KPCA特征提取的Adaboost红外目标检测[J].红外与激光工程,2011,40(2):338-343.(WU Y R, CHENG Y M, ZHAO Y Q, et al. Detection of infrared targets based on Adaboost by feature extraction using KPCA[J]. Infrared and Laser Engineering, 2011, 40(2):338-343.) [14] WANG X, SHEN S, NING C, et al. Robust object tracking based on local discriminative sparse representation[J]. Journal of the Optical Society of America A, 2017, 34(4):533-544. [15] DAI W, YANG Q, XUE G, et al. Boosting for transfer learning[C]//Proceedings of the 24th ACM International Conference on Machine Learning. New York:ACM, 2007:193-200. [16] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39.(ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39.) [17] MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9):1484-1488. [18] LI X, ZHANG L, DU B, et al. Iterative reweighting heterogeneous transfer learning framework for supervised remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5):2022-2035. [19] REN C, DAI D, HUANG K, et al. Transfer learning of structured representation for face recognition[J]. IEEE Transactions on Image Processing, 2014, 23(12):5440-5454. [20] MIRON A, BESBES B, ROGOZAN A, et al. Intensity self similarity features for pedestrian detection in far-infrared images[C]//Proceedings of the 2012 IEEE International Symposium. Piscataway:IEEE, 2012:1120-1125. [21] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(4):433-459. [22] LI M, YUAN B. 2D-LDA:a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5):527-532. [23] KHELLAL A, MA H, FEI Q. Pedestrian classification and detection in far infrared images[C]//Proceedings of the 2015 International Conference on Intelligent Robotics and Applications, LNCS 9244. Cham:Springer, 2015:511-522. [24] DALAL N. Finding people in images and videos[D]. Grenoble, France:Institute National Polytechnique de Grenoble, 2006:106-107. [25] WANG X, SHEN S, NING C, et al. Multi-class remote sensing objects recognition based on discriminative sparse representation[J]. Applied Optics, 2016, 55(6):1381-1394. [26] GUO Z, ZHANG L, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6):1657-1663. [27] KHAN M N A, FAN G, HEISTERKAMP D R, et al. Automatic target recognition in infrared imagery using dense HOG features and relevance grouping of vocabulary[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2014:293-298. [28] HASSAN M A, PARDIANSYAH I, MALIK A S, et al. Enhanced people counting system based head-shoulder detection in dense crowd scenario[C]//Proceedings of the 6th International Conference on Intelligent and Advanced Systems. Piscataway:IEEE, 2016:1-6. [29] WANG S, LIU Z. Infrared face recognition based on histogram and k-nearest neighbor classification[C]//Proceedings of the 7th International Symposium on Neural Networks. Berlin:Springer, Heidelberg, 2010:104-111. [30] YANG B, LEI Y, YAN B. Distributed multi-human location algorithm using naive Bayes classifier for a binary pyroelectric infrared sensor tracking system[J]. IEEE Sensors Journal, 2015, 16(1):216-223. |