计算机应用 ›› 2019, Vol. 39 ›› Issue (12): 3490-3495.DOI: 10.11772/j.issn.1001-9081.2019060982

• 人工智能 • 上一篇    下一篇

基于多特征降维和迁移学习的红外人体目标识别方法

王鑫1, 张鑫1, 宁晨2   

  1. 1. 河海大学 计算机与信息学院, 南京 211100;
    2. 南京师范大学 物理科学与技术学院, 南京 210000
  • 收稿日期:2019-06-12 修回日期:2019-08-26 出版日期:2019-12-10 发布日期:2019-10-15
  • 作者简介:王鑫(1981-),女,安徽阜阳人,副教授,博士,主要研究方向:图像处理、模式识别、计算机视觉、机器学习;张鑫(1995-),男,江苏泰州人,硕士研究生,主要研究方向:图像处理、模式识别;宁晨(1978-),男,安徽阜阳人,讲师,博士研究生,主要研究方向:图像处理、机器学习。
  • 基金资助:
    国家自然科学基金资助项目(61603124);教育部中央高校基本科研业务费专项资金项目(2019B15314);江苏省"六大人才高峰"高层次人才项目(XYDXX-007)。

Infrared human target recognition method based on multi-feature dimensionality reduction and transfer learning

WANG Xin1, ZHANG Xin1, NING Chen2   

  1. 1. College of Computer and Information, Hohai University, Nanjing Jiangsu 211100, China;
    2. School of Physics and Technology, Nanjing Normal University, Nanjing Jiangsu 210000, China
  • Received:2019-06-12 Revised:2019-08-26 Online:2019-12-10 Published:2019-10-15
  • Contact: 王鑫
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61603124), the Fundamental Research Funds for the Central Universities (2019B15314), the Six Talents Peak Project of Jiangsu Province (XYDXX-007).

摘要: 针对红外成像条件下人体目标受干扰严重时目标的识别准确性和鲁棒性较差的问题,提出了一种基于多特征降维和迁移学习的红外人体目标识别方法。首先,针对传统的红外人体目标特征提取方法提取某单一特征时存在信息涵盖不全面的问题,提取目标不同种类的异构特征,从而充分挖掘出红外人体目标的特点。其次,为了向后续识别分析提供有效且紧凑的特征描述,采用主成分分析方法对融合后的异构特征进行降维。最后,针对带标签的红外人体目标样本数据匮乏、训练样本和测试样本之间的分布及语义偏差导致的泛化性能差等问题,提出了一种有效的基于迁移学习的红外人体目标分类器,可较大程度地提高泛化性能和目标识别准确度。实验结果表明,所提的方法在红外人体目标数据集上的识别准确率达到了94%以上,与使用方向梯度直方图(HOG)特征、亮度自相似(ISS)特征等单一特征进行特征表示的方法以及使用传统的非迁移分类器如支持向量机(SVM)、K-近邻算法(KNN)等进行学习的方法相比均有所提升,且更加稳定,可以在实际的复杂红外场景中提升人体目标识别的性能。

关键词: 红外, 人体目标识别, 多特征, 降维, 迁移学习

Abstract: Aiming at the poor recognition accuracy and robustness of the human targets caused by the serious interference on the targets under infrared imaging conditions, an infrared human target recognition method based on multi-feature dimensionality reduction and transfer learning was proposed. Firstly, in order to solve the problem of incomplete information during the extraction of a single feature by the traditional infrared human target feature extraction method, different kinds of heterogeneous features were extracted to fully exploit the characteristics of infrared human targets. Secondly, to provide the efficient and compact feature description for subsequent recognition, a principal component analysis method was utilized to reduce the dimensionality of the fused heterogeneous features. Finally, to solve the problems such as poor generalization performance, caused by the lack of tagged human target samples in infrared images as well as the distributional and semantic deviations between the training samples and testing samples, an effective infrared human target classifier based on transfer learning was presented, which was able to greatly improve the generalization performance and the target recognition accuracy. The experimental results show that the recognition accuracy of the method on infrared human target data set reaches more than 94%, which is better and more stable than that of the methods with a single feature such as Histogram of Oriented Gradients (HOG), Intensity Self Similarity (ISS) for feature representation or the methods learned with traditional non-transfer classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN). Therefore, the performance of infrared human target recognition is improved in real complex scenes by the method.

Key words: infrared, human target recognition, multi-feature, dimensionality reduction, transfer learning

中图分类号: