[1] DOMINGOS P, RICHARDSON M. Mining the network value of customers[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2001:57-66. [2] RICHARDSON M, DOMINGOS P. Mining knowledge-sharing sites for viral marketing[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2002:61-70. [3] KEMPE D, KLEINBERG J, TARDOS É. Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2003:137-146. [4] LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2007:420-429. [5] CHEN W, WANG Y, YANG S. Efficient influence maximization in social networks[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2009:199-208. [6] CHENG S, SHEN H, HUANG J, et al. StaticGreedy:solving the scalability-accuracy dilemma in influence maximization[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management. New York:ACM, 2013:509-518. [7] OHSAKA N, AKIBA T, YOSHIDA Y, et al. Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Pola Alto, CA:AAAI Press, 2014:138-144. [8] 曹玖新,董丹,徐顺,等.一种基k-核的社会网络影响最大化算法[J].计算机学报,2015,38(2):238-248.(CAO J X, DONG D, XU S, et al. A k-core based algorithm for influence maximization in social networks[J]. Chinese Journal of Computers, 2015, 38(2):238-248.) [9] 王双,李斌,刘学军,等.基于社区度的边界节点影响力最大化算法[J].电子技术应用,2015,41(5):145-148,151.(WANG S, LI B, LIU X J, et al. An influence maximization algorithm of boundary nodes based on degree of community[J]. Application of Electronic Technique, 2015, 41(5):145-148, 151.) [10] 杨书新,刘成辉,鲁纪华.基于两阶段启发的社交网络影响最大化算法[J].小型微型计算机系统,2017,38(10):2268-2274.(YANG S X, LIU C H, LU J H. Two stages of heuristics based algorithm for influence maximization in social network[J]. Journal of Chinese Computer Systems, 2017, 38(10):2268-2274.) [11] 李阅志,祝园园,钟鸣.基k-核过滤的社交网络影响最大化算法[J].计算机应用,2018,38(2):464-470.(LI Y Z, ZHU Y Y, ZHONG M. k-core filtered influence maximization algorithm in social networks[J]. Journal of Computer Applications, 2018, 38(2):464-470.) [12] 李敏佳,许国艳,朱帅,等.基于结构洞和度折扣的影响力最大化算法[J].计算机应用,2018,38(12):3419-3424.(LI M J, XU G Y, ZHU S, et al. Influence maximization algorithm based on structure hole and degree discount[J]. Journal of Computer Applications, 2018, 38(12):3419-3424.) [13] 孙子力,彭舰,仝博.社会网络中基于社群衰减的影响力最大化算法[J].计算机应用,2019,39(3):834-838.(SUN Z L, PENG J, TONG B. Influence maximization algorithm based on community attention in social network[J]. Journal of Computer Applications, 2019, 39(3):834-838.) [14] KIMURA M, SAITO K. Tractable models for information diffusion in social networks[C]//Proceedings of the 2006 European Conference on Principles of Data Mining and Knowledge Discovery, LNCS 4213. Berlin:Springer, 2006:259-271. [15] CHEN W, WANG C, WANG Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2010:1029-1038. [16] KIM J, KIM S K, YU H. Scalable and parallelizable processing of influence maximization for large-scale social networks?[C]//Proceedings of the IEEE 29th International Conference on Data Engineering. Piscataway:IEEE, 2013:266-277. [17] WU H, SHANG J, ZHOU S, et al. LAIM:a linear time iterative approach for efficient influence maximization in large-scale networks[J]. IEEE Access, 2018, 6:44221-44234. [18] BORGS C, BRAUTBAR M, CHAYES J, et al. Maximizing social influence in nearly optimal time[C]//Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA:Society for Industrial and Applied Mathematics, 2014:946-957. [19] TANG Y, XIAO X, SHI Y. Influence maximization:Near-optimal time complexity meets practical efficiency[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2014:75-86. [20] TANG Y, SHI Y, XIAO X. Influence maximization in near-linear time:a martingale approach[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2015:1539-1554. [21] NGUYEN H T, THAI M T, DINH T N. Stop-and-stare:optimal sampling algorithms for viral marketing in billion-scale networks[C]//Proceedings of the 2016 International Conference on Management of Data. New York:ACM, 2016:695-710. [22] WANG X, ZHANG Y, ZHANG W, et al. Bring order into the samples:a novel scalable method for influence maximization[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29(2):243-256. [23] BRIN S, PAGE L. The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1/2/3/4/5/67):107-117. [24] YUAN J, ZHANG R, TANG J, et al. Efficient and effective influence maximization in large-scale social networks via two frameworks[J]. Physica A:Statistical Mechanics and its Applications, 2019, 526:No.120966. |