《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (8): 2519-2527.DOI: 10.11772/j.issn.1001-9081.2021061104
• 先进计算 • 上一篇
收稿日期:
2021-07-01
修回日期:
2021-09-11
接受日期:
2021-09-28
发布日期:
2022-08-09
出版日期:
2022-08-10
通讯作者:
张新明
作者简介:
张新明(1963—),男,湖北孝感人,教授,硕士,CCF会员,主要研究方向:智能优化算法、图像分割;基金资助:
Xinming ZHANG1,2(), Shaochen WEN1, Shangwang LIU1,2
Received:
2021-07-01
Revised:
2021-09-11
Accepted:
2021-09-28
Online:
2022-08-09
Published:
2022-08-10
Contact:
Xinming ZHANG
About author:
ZHANG Xinming, born in 1963, M. S., professor. His research interests include intelligent optimization algorithm, image segmentation.Supported by:
摘要:
针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO——DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.445 0 s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。
中图分类号:
张新明, 温少晨, 刘尚旺. 差分扰动的堆优化算法[J]. 计算机应用, 2022, 42(8): 2519-2527.
Xinming ZHANG, Shaochen WEN, Shangwang LIU. Differential disturbed heap-based optimizer[J]. Journal of Computer Applications, 2022, 42(8): 2519-2527.
算法 | 提出年份 | 参数设置 |
---|---|---|
DDHBO | 2021 | N=40, T=7 500, γ=[0,2], λ=[-1,1] |
HBO[ | 2020 | N=40, T=7 500, γ=[0,2], λ=[-1,1] |
WRBBO[ | 2019 | N=100, T=3 000, I=1 |
DEBBO[ | 2018 | N=100, T=3 000, I =0.99, E=0.99, mmax=0.006 |
HGWOP[ | 2021 | N=100, T=3 000, 0 < a < 2, 0 < cr < 1 |
MEGWO[ | 2019 | N=100, T=3 000, GR = 0.8, 0.6 < SR< 1, 0 < DR< 0.4 |
MPSO[ | 2020 | N=50, T=6 000, w=1, φ1=φ2=2.5 |
表1 不同算法的参数设置
Tab. 1 Parameter setting of different algorithms
算法 | 提出年份 | 参数设置 |
---|---|---|
DDHBO | 2021 | N=40, T=7 500, γ=[0,2], λ=[-1,1] |
HBO[ | 2020 | N=40, T=7 500, γ=[0,2], λ=[-1,1] |
WRBBO[ | 2019 | N=100, T=3 000, I=1 |
DEBBO[ | 2018 | N=100, T=3 000, I =0.99, E=0.99, mmax=0.006 |
HGWOP[ | 2021 | N=100, T=3 000, 0 < a < 2, 0 < cr < 1 |
MEGWO[ | 2019 | N=100, T=3 000, GR = 0.8, 0.6 < SR< 1, 0 < DR< 0.4 |
MPSO[ | 2020 | N=50, T=6 000, w=1, φ1=φ2=2.5 |
算法 | 平均排名 | 总排名 |
---|---|---|
HBO | 4.70 | 5 |
ESHBO | 3.87 | 4 |
EBHBO | 2.93 | 3 |
WEHBO | 2.13 | 2 |
DDHBO | 1.37 | 1 |
表2 不完全算法平均排名结果
Tab. 2 Average ranking results of incomplete algorithms
算法 | 平均排名 | 总排名 |
---|---|---|
HBO | 4.70 | 5 |
ESHBO | 3.87 | 4 |
EBHBO | 2.93 | 3 |
WEHBO | 2.13 | 2 |
DDHBO | 1.37 | 1 |
函数 | ESHBO vs HBO | EBHBO vs ESHBO | WEHBO vs EBHBO | DDHBO vs WEHBO | 函数 | ESHBO vs HBO | EBHBO vs ESHBO | WEHBO vs EBHBO | DDHBO vs WEHBO |
---|---|---|---|---|---|---|---|---|---|
F1 | - | + | + | + | F17 | + | + | + | + |
F2 | + | + | + | + | F18 | + | + | + | + |
F3 | + | + | + | + | F19 | - | + | + | + |
F4 | + | + | + | + | F20 | + | + | + | + |
F5 | + | + | + | + | F21 | + | + | + | + |
F6 | - | - | - | + | F22 | + | + | - | + |
F7 | + | + | + | + | F23 | + | + | + | + |
F8 | + | + | + | + | F24 | + | + | + | + |
F9 | + | - | + | + | F25 | + | + | - | + |
F10 | + | + | + | + | F26 | + | + | + | - |
F11 | + | + | + | - | F27 | - | + | + | + |
F12 | + | + | + | + | F28 | + | - | + | - |
F13 | + | + | + | + | F29 | + | + | + | + |
F14 | + | + | + | + | F30 | + | + | + | + |
F15 | - | + | + | + | n/+/≈/- | 30/25/0/5 | 30/27/0/3 | 30/27/0/3 | 30/27/0/3 |
F16 | + | + | + | + |
表3 不完全算法的Wilcoxon符号秩检验结果
Tab. 3 Wilcoxon signed rank test results of incomplete algorithms
函数 | ESHBO vs HBO | EBHBO vs ESHBO | WEHBO vs EBHBO | DDHBO vs WEHBO | 函数 | ESHBO vs HBO | EBHBO vs ESHBO | WEHBO vs EBHBO | DDHBO vs WEHBO |
---|---|---|---|---|---|---|---|---|---|
F1 | - | + | + | + | F17 | + | + | + | + |
F2 | + | + | + | + | F18 | + | + | + | + |
F3 | + | + | + | + | F19 | - | + | + | + |
F4 | + | + | + | + | F20 | + | + | + | + |
F5 | + | + | + | + | F21 | + | + | + | + |
F6 | - | - | - | + | F22 | + | + | - | + |
F7 | + | + | + | + | F23 | + | + | + | + |
F8 | + | + | + | + | F24 | + | + | + | + |
F9 | + | - | + | + | F25 | + | + | - | + |
F10 | + | + | + | + | F26 | + | + | + | - |
F11 | + | + | + | - | F27 | - | + | + | + |
F12 | + | + | + | + | F28 | + | - | + | - |
F13 | + | + | + | + | F29 | + | + | + | + |
F14 | + | + | + | + | F30 | + | + | + | + |
F15 | - | + | + | + | n/+/≈/- | 30/25/0/5 | 30/27/0/3 | 30/27/0/3 | 30/27/0/3 |
F16 | + | + | + | + |
函数 | DDHBO | HBO | WRBBO | DEBBO | SaDE | SE04 | HGWOP | MEGWO | MPSO | |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 3.148 7E-14 | 2.917 8E+02 | 3.018 6E+03 | 2.784 9E+03 | 3.071 4E+03 | 3.293 0E+03 | 1.936 1E+03 | 4.551 7E+03 | 4.753 9E+07 |
Std | 1.538 8E-14 | 7.396 1E+02 | 3.698 1E+03 | 4.036 4E+03 | 3.507 2E+03 | 4.232 8E+03 | 1.965 7E+03 | 1.067 7E+03 | 1.082 2E+08 | |
Rank | 1 | 2 | 5 | 4 | 6 | 7 | 3 | 8 | 9 | |
F2 | Mean | 3.842 4E-07 | 1.876 5E+20 | 1.893 9E+10 | 8.268 8E+17 | 8.627 5E-01 | 3.080 2E+13 | 3.721 9E-04 | 2.888 4E+08 | 4.099 8E+16 |
Std | 5.144 9E-07 | 8.717 9E+20 | 5.612 3E+10 | 2.405 4E+18 | 4.935 7E+00 | 1.169 4E+14 | 1.306 9E-03 | 8.057 1E+08 | 1.991 8E+17 | |
Rank | 1 | 9 | 5 | 8 | 3 | 6 | 2 | 4 | 7 | |
F3 | Mean | 1.326 3E-13 | 2.817 3E+03 | 4.625 8E+03 | 3.677 2E+04 | 3.004 5E+02 | 9.797 4E+03 | 7.314 3E-05 | 2.263 3E+02 | 1.682 4E-01 |
Std | 6.693 7E-14 | 1.941 4E+03 | 1.303 5E+03 | 5.839 4E+03 | 7.301 7E+02 | 3.437 7E+03 | 2.521 1E-04 | 1.703 1E+02 | 8.724 6E-01 | |
Rank | 1 | 6 | 7 | 9 | 5 | 8 | 2 | 4 | 3 | |
F4 | Mean | 3.468 0E+01 | 9.078 2E+01 | 8.782 8E+01 | 8.485 1E+01 | 6.042 3E+01 | 8.588 1E+01 | 9.399 3E+01 | 2.481 5E+01 | 6.625 9E+01 |
Std | 3.005 7E+01 | 1.756 6E+01 | 7.191 2E+00 | 2.284 8E-01 | 2.982 5E+01 | 1.125 1E+01 | 1.065 3E+01 | 2.899 5E+01 | 3.288 8E+01 | |
Rank | 2 | 8 | 7 | 5 | 3 | 6 | 9 | 1 | 4 | |
F5 | Mean | 5.164 5E+01 | 1.219 6E+02 | 1.436 5E+02 | 5.821 6E+01 | 5.619 2E+01 | 4.168 8E+01 | 2.684 4E+01 | 5.691 2E+01 | 6.924 4E+01 |
Std | 1.271 9E+01 | 1.045 2E+01 | 1.222 4E+01 | 6.595 7E+00 | 1.421 6E+01 | 8.154 5E+00 | 9.639 3E+00 | 1.072 5E+01 | 1.516 7E+01 | |
Rank | 3 | 8 | 9 | 6 | 4 | 2 | 1 | 5 | 7 | |
F6 | Mean | 3.549 2E-08 | 1.136 9E-13 | 1.114 6E-13 | 1.136 9E-13 | 8.931 7E-02 | 7.548 1E-06 | 3.575 1E-06 | 2.447 0E-01 | 7.279 1E-02 |
Std | 1.563 3E-07 | 0 | 1.591 9E-14 | 0 | 1.395 5E-01 | 3.988 0E-05 | 7.608 8E-06 | 8.162 0E-02 | 2.706 7E-01 | |
Rank | 4 | 2 | 1 | 2 | 8 | 6 | 5 | 9 | 7 | |
F7 | Mean | 8.725 2E+01 | 1.587 0E+02 | 1.861 4E+02 | 9.972 5E+01 | 9.494 5E+01 | 7.244 8E+01 | 4.565 3E+01 | 8.910 6E+01 | 9.923 0E+01 |
Std | 1.466 9E+01 | 8.904 8E+00 | 9.520 3E+00 | 6.428 5E+00 | 1.987 9E+01 | 7.349 5E+00 | 8.393 2E+00 | 1.093 5E+01 | 2.284 6E+01 | |
Rank | 3 | 8 | 9 | 7 | 5 | 2 | 1 | 4 | 6 | |
F8 | Mean | 5.396 4E+01 | 1.282 6E+02 | 1.484 9E+02 | 5.929 9E+01 | 5.394 2E+01 | 4.419 4E+01 | 2.668 8E+01 | 5.939 8E+01 | 6.350 1E+01 |
Std | 1.239 6E+01 | 1.138 0E+01 | 1.079 4E+01 | 6.078 8E+00 | 1.279 2E+01 | 6.583 4E+00 | 7.426 2E+00 | 1.066 3E+01 | 1.585 1E+01 | |
Rank | 4 | 8 | 9 | 5 | 3 | 2 | 1 | 6 | 7 | |
F9 | Mean | 1.093 6E-01 | 9.492 3E-01 | 1.755 5E-03 | 4.012 5E-14 | 8.355 6E+01 | 3.083 9E-01 | 1.241 9E-02 | 7.826 7E+00 | 1.130 3E+02 |
Std | 1.740 0E-01 | 1.290 0E+00 | 1.253 6E-02 | 5.487 0E-14 | 6.264 3E+01 | 8.413 9E-01 | 6.551 0E-02 | 1.181 5E+01 | 1.011 7E+02 | |
Rank | 4 | 6 | 2 | 1 | 8 | 5 | 3 | 7 | 9 | |
F10 | Mean | 2.553 2E+03 | 4.439 6E+03 | 6.785 2E+03 | 3.291 1E+03 | 2.325 3E+03 | 2.326 7E+03 | 1.971 7E+03 | 2.436 9E+03 | 3.283 7E+03 |
Std | 4.880 5E+02 | 2.200 9E+02 | 3.086 3E+02 | 2.728 4E+02 | 4.924 7E+02 | 2.845 7E+02 | 6.104 3E+02 | 4.454 2E+02 | 5.998 8E+02 | |
Rank | 5 | 8 | 9 | 7 | 2 | 3 | 1 | 4 | 6 | |
F11 | Mean | 2.853 7E+01 | 5.334 7E+01 | 5.331 9E+01 | 3.743 0E+01 | 1.003 2E+02 | 4.134 3E+01 | 6.979 7E+01 | 2.961 2E+01 | 1.079 6E+02 |
Std | 2.041 6E+01 | 3.327 5E+01 | 3.000 7E+01 | 2.367 2E+01 | 4.310 1E+01 | 2.799 4E+01 | 2.794 5E+01 | 1.034 7E+01 | 4.660 0E+01 | |
Rank | 1 | 6 | 5 | 3 | 8 | 4 | 7 | 2 | 9 | |
F12 | Mean | 8.512 7E+03 | 2.098 7E+06 | 7.184 9E+04 | 1.386 6E+05 | 6.862 9E+04 | 1.114 3E+06 | 2.064 1E+04 | 1.598 3E+04 | 5.157 4E+05 |
Std | 9.175 4E+03 | 1.400 7E+06 | 4.456 8E+04 | 9.209 7E+04 | 3.825 2E+04 | 8.142 2E+05 | 8.867 3E+03 | 4.043 4E+03 | 6.505 1E+05 | |
Rank | 1 | 9 | 5 | 6 | 4 | 8 | 3 | 2 | 7 | |
F13 | Mean | 5.010 8E+01 | 1.030 8E+04 | 1.110 8E+04 | 8.126 5E+03 | 1.121 1E+04 | 4.606 3E+03 | 1.155 2E+04 | 2.045 0E+02 | 1.286 5E+04 |
Std | 2.426 2E+01 | 9.148 1E+03 | 1.387 6E+04 | 7.806 6E+03 | 1.053 5E+04 | 4.859 0E+03 | 1.100 2E+04 | 2.702 8E+01 | 9.090 5E+03 | |
Rank | 1 | 5 | 6 | 4 | 7 | 3 | 8 | 2 | 9 | |
F14 | Mean | 5.499 5E+01 | 4.081 1E+04 | 3.449 2E+03 | 4.924 0E+03 | 4.323 8E+03 | 7.120 4E+04 | 1.863 3E+03 | 6.198 5E+01 | 5.316 5E+02 |
Std | 1.467 5E+01 | 3.111 7E+04 | 2.274 2E+03 | 3.290 2E+03 | 5.715 9E+03 | 5.932 3E+04 | 1.553 0E+03 | 8.664 7E+00 | 7.877 1E+02 | |
Rank | 1 | 8 | 5 | 7 | 6 | 9 | 4 | 2 | 3 | |
F15 | Mean | 4.210 7E+01 | 1.519 0E+03 | 5.852 8E+03 | 4.994 4E+03 | 2.167 6E+03 | 2.201 3E+03 | 2.506 0E+03 | 5.163 4E+01 | 1.340 9E+03 |
Std | 3.254 0E+01 | 1.346 3E+03 | 5.709 0E+03 | 6.646 8E+03 | 3.017 8E+03 | 1.975 6E+03 | 3.159 9E+03 | 1.071 3E+01 | 1.638 5E+03 | |
Rank | 1 | 4 | 9 | 8 | 5 | 6 | 7 | 2 | 3 | |
F16 | Mean | 4.516 2E+02 | 7.471 4E+02 | 8.411 8E+02 | 3.964 3E+02 | 5.607 2E+02 | 4.939 2E+02 | 5.143 2E+02 | 4.482 3E+02 | 8.792 4E+02 |
Std | 1.913 8E+02 | 1.433 0E+02 | 1.918 0E+02 | 1.193 2E+02 | 2.085 0E+02 | 1.730 9E+02 | 1.621 2E+02 | 1.344 3E+02 | 3.267 9E+02 | |
Rank | 3 | 7 | 8 | 1 | 6 | 4 | 5 | 2 | 9 | |
F17 | Mean | 5.885 0E+01 | 1.725 5E+02 | 1.586 9E+02 | 8.164 2E+01 | 8.768 4E+01 | 1.411 6E+02 | 1.751 5E+02 | 6.954 4E+01 | 3.789 9E+02 |
Std | 2.351 5E+01 | 7.985 9E+01 | 3.909 2E+01 | 2.203 7E+01 | 9.128 9E+01 | 8.502 6E+01 | 6.268 8E+01 | 1.729 6E+01 | 2.372 5E+02 | |
Rank | 1 | 7 | 6 | 3 | 4 | 5 | 8 | 2 | 9 | |
F18 | Mean | 8.919 1E+02 | 5.058 8E+05 | 4.251 1E+05 | 3.222 5E+05 | 1.003 4E+05 | 2.136 1E+05 | 6.702 6E+04 | 2.050 5E+02 | 2.719 7E+04 |
Std | 1.519 9E+03 | 2.393 0E+05 | 1.659 3E+05 | 1.219 7E+05 | 1.101 9E+05 | 1.326 1E+05 | 2.724 7E+04 | 4.753 6E+01 | 2.121 0E+04 | |
Rank | 2 | 9 | 8 | 7 | 5 | 6 | 4 | 1 | 3 | |
F19 | Mean | 1.983 6E+01 | 1.201 6E+03 | 5.896 4E+03 | 8.368 6E+03 | 5.961 2E+03 | 2.072 3E+03 | 4.236 9E+03 | 2.997 7E+01 | 5.149 1E+03 |
Std | 6.642 0E+00 | 1.171 9E+03 | 7.992 5E+03 | 9.279 5E+03 | 7.111 2E+03 | 2.168 5E+03 | 3.223 9E+03 | 3.389 7E+00 | 4.760 1E+03 | |
Rank | 1 | 3 | 7 | 9 | 8 | 4 | 5 | 2 | 6 | |
F20 | Mean | 9.986 9E+01 | 2.051 1E+02 | 1.542 3E+02 | 5.520 5E+01 | 1.298 9E+02 | 1.730 3E+02 | 1.960 3E+02 | 1.136 3E+02 | 3.029 1E+02 |
Std | 6.211 9E+01 | 9.801 8E+01 | 9.701 1E+01 | 3.541 3E+01 | 7.097 0E+01 | 7.201 5E+01 | 3.365 7E+01 | 5.241 1E+01 | 1.446 3E+02 | |
Rank | 2 | 8 | 5 | 1 | 4 | 6 | 7 | 3 | 9 | |
F21 | Mean | 2.522 7E+02 | 3.314 2E+02 | 3.429 9E+02 | 2.595 0E+02 | 2.489 6E+02 | 2.504 7E+02 | 2.308 5E+02 | 2.545 8E+02 | 2.581 5E+02 |
Std | 1.153 9E+01 | 1.023 6E+01 | 1.094 4E+01 | 7.669 0E+00 | 1.319 5E+01 | 8.444 2E+00 | 9.077 0E+00 | 3.324 7E+01 | 1.564 0E+01 | |
Rank | 4 | 8 | 9 | 7 | 2 | 3 | 1 | 5 | 6 | |
F22 | Mean | 1.000 0E+02 | 2.006 4E+03 | 1.000 0E+02 | 1.000 0E+02 | 1.022 8E+02 | 1.021 1E+03 | 1.000 0E+02 | 1.002 2E+02 | 1.914 7E+02 |
Std | 1.960 5E-13 | 2.233 3E+03 | 1.004 7E-13 | 2.310 0E-13 | 3.227 9E+00 | 1.287 2E+03 | 1.827 4E-13 | 4.391 7E-02 | 5.626 6E+02 | |
Rank | 3 | 9 | 1 | 4 | 6 | 8 | 2 | 5 | 7 | |
F23 | Mean | 3.961 5E+02 | 4.716 4E+02 | 4.839 3E+02 | 4.032 3E+02 | 4.147 2E+02 | 4.024 7E+02 | 3.765 4E+02 | 3.895 9E+02 | 4.337 5E+02 |
Std | 4.460 9E+01 | 1.047 0E+01 | 1.220 9E+01 | 5.634 8E+00 | 1.874 2E+01 | 8.168 7E+00 | 1.295 4E+01 | 6.878 7E+01 | 2.764 0E+01 | |
Rank | 3 | 8 | 9 | 5 | 6 | 4 | 1 | 2 | 7 | |
F24 | Mean | 4.919 9E+02 | 6.028 4E+02 | 5.664 8E+02 | 4.743 0E+02 | 4.816 9E+02 | 4.984 0E+02 | 4.445 8E+02 | 4.897 2E+02 | 4.927 7E+02 |
Std | 2.102 7E+01 | 1.297 3E+01 | 1.234 4E+01 | 6.005 5E+00 | 2.061 0E+01 | 1.389 9E+01 | 1.260 3E+01 | 1.659 7E+01 | 2.642 7E+01 | |
Rank | 5 | 9 | 8 | 2 | 3 | 7 | 1 | 4 | 6 | |
F25 | Mean | 3.868 8E+02 | 3.873 4E+02 | 3.868 8E+02 | 3.869 1E+02 | 4.012 4E+02 | 3.877 9E+02 | 3.876 3E+02 | 3.837 4E+02 | 4.304 7E+02 |
Std | 5.332 6E-01 | 4.910 6E-01 | 5.092 3E-01 | 7.552 4E-02 | 1.948 9E+01 | 1.131 9E+00 | 4.084 3E-01 | 1.824 6E-01 | 2.850 3E+01 | |
Rank | 3 | 5 | 2 | 4 | 8 | 7 | 6 | 1 | 9 | |
F26 | Mean | 8.693 4E+02 | 2.186 6E+03 | 2.006 8E+03 | 1.482 1E+03 | 1.734 4E+03 | 1.533 7E+03 | 4.335 8E+02 | 2.505 1E+02 | 1.401 0E+03 |
Std | 6.524 9E+02 | 4.370 8E+02 | 1.991 4E+02 | 7.201 5E+01 | 7.134 7E+02 | 1.905 1E+02 | 3.933 7E+02 | 4.111 2E+01 | 1.203 2E+03 | |
Rank | 3 | 9 | 8 | 5 | 7 | 6 | 2 | 1 | 4 | |
F27 | Mean | 5.023 9E+02 | 5.090 4E+02 | 4.992 2E+02 | 4.980 7E+02 | 5.428 9E+02 | 5.074 4E+02 | 5.100 2E+02 | 5.128 6E+02 | 5.369 5E+02 |
Std | 1.103 9E+01 | 4.598 6E+00 | 7.983 4E+00 | 4.727 0E+00 | 1.708 6E+01 | 3.624 2E+00 | 1.101 0E+01 | 6.163 2E+00 | 1.463 8E+01 | |
Rank | 3 | 5 | 2 | 1 | 9 | 4 | 6 | 7 | 8 | |
F28 | Mean | 3.296 1E+02 | 3.731 3E+02 | 3.840 9E+02 | 3.228 1E+02 | 3.325 7E+02 | 4.136 4E+02 | 3.871 8E+02 | 3.649 2E+02 | 5.207 6E+02 |
Std | 4.869 7E+01 | 5.294 7E+01 | 4.324 8E+01 | 3.788 0E+01 | 5.216 5E+01 | 2.557 7E+01 | 4.719 4E+01 | 3.247 7E+01 | 4.453 9E+01 | |
Rank | 2 | 5 | 6 | 1 | 3 | 8 | 7 | 4 | 9 | |
F29 | Mean | 5.079 2E+02 | 7.727 6E+02 | 6.200 0E+02 | 5.185 1E+02 | 5.582 6E+02 | 5.477 8E+02 | 4.943 9E+02 | 5.438 5E+02 | 6.830 5E+02 |
Std | 5.261 8E+01 | 7.822 4E+01 | 6.108 3E+01 | 3.485 9E+01 | 1.004 0E+02 | 8.196 0E+01 | 4.454 2E+01 | 5.424 1E+01 | 1.857 9E+02 | |
Rank | 2 | 9 | 7 | 3 | 6 | 5 | 1 | 4 | 8 | |
F30 | Mean | 2.352 6E+03 | 1.831 0E+04 | 5.756 5E+03 | 5.940 5E+03 | 5.014 7E+03 | 4.967 1E+03 | 4.066 7E+03 | 3.685 5E+03 | 5.778 6E+03 |
Std | 3.379 4E+02 | 1.051 6E+04 | 2.437 8E+03 | 2.315 8E+03 | 1.971 2E+03 | 2.093 4E+03 | 1.795 3E+03 | 3.304 2E+02 | 1.291 7E+04 | |
Rank | 1 | 9 | 6 | 8 | 5 | 4 | 3 | 2 | 7 | |
排名第1 的个数 | 11 | 0 | 2 | 5 | 0 | 0 | 8 | 4 | 0 | |
平均排名 | 2.37 | 6.90 | 6.17 | 4.77 | 5.30 | 5.27 | 3.87 | 3.57 | 6.77 | |
总排名 | 1 | 9 | 7 | 4 | 6 | 5 | 3 | 2 | 8 |
表4 9种算法在30维CEC2017复杂函数上的测试结果
Tab. 4 Test results of 9 algorithms on 30-dimensional CEC2017 complex functions
函数 | DDHBO | HBO | WRBBO | DEBBO | SaDE | SE04 | HGWOP | MEGWO | MPSO | |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 3.148 7E-14 | 2.917 8E+02 | 3.018 6E+03 | 2.784 9E+03 | 3.071 4E+03 | 3.293 0E+03 | 1.936 1E+03 | 4.551 7E+03 | 4.753 9E+07 |
Std | 1.538 8E-14 | 7.396 1E+02 | 3.698 1E+03 | 4.036 4E+03 | 3.507 2E+03 | 4.232 8E+03 | 1.965 7E+03 | 1.067 7E+03 | 1.082 2E+08 | |
Rank | 1 | 2 | 5 | 4 | 6 | 7 | 3 | 8 | 9 | |
F2 | Mean | 3.842 4E-07 | 1.876 5E+20 | 1.893 9E+10 | 8.268 8E+17 | 8.627 5E-01 | 3.080 2E+13 | 3.721 9E-04 | 2.888 4E+08 | 4.099 8E+16 |
Std | 5.144 9E-07 | 8.717 9E+20 | 5.612 3E+10 | 2.405 4E+18 | 4.935 7E+00 | 1.169 4E+14 | 1.306 9E-03 | 8.057 1E+08 | 1.991 8E+17 | |
Rank | 1 | 9 | 5 | 8 | 3 | 6 | 2 | 4 | 7 | |
F3 | Mean | 1.326 3E-13 | 2.817 3E+03 | 4.625 8E+03 | 3.677 2E+04 | 3.004 5E+02 | 9.797 4E+03 | 7.314 3E-05 | 2.263 3E+02 | 1.682 4E-01 |
Std | 6.693 7E-14 | 1.941 4E+03 | 1.303 5E+03 | 5.839 4E+03 | 7.301 7E+02 | 3.437 7E+03 | 2.521 1E-04 | 1.703 1E+02 | 8.724 6E-01 | |
Rank | 1 | 6 | 7 | 9 | 5 | 8 | 2 | 4 | 3 | |
F4 | Mean | 3.468 0E+01 | 9.078 2E+01 | 8.782 8E+01 | 8.485 1E+01 | 6.042 3E+01 | 8.588 1E+01 | 9.399 3E+01 | 2.481 5E+01 | 6.625 9E+01 |
Std | 3.005 7E+01 | 1.756 6E+01 | 7.191 2E+00 | 2.284 8E-01 | 2.982 5E+01 | 1.125 1E+01 | 1.065 3E+01 | 2.899 5E+01 | 3.288 8E+01 | |
Rank | 2 | 8 | 7 | 5 | 3 | 6 | 9 | 1 | 4 | |
F5 | Mean | 5.164 5E+01 | 1.219 6E+02 | 1.436 5E+02 | 5.821 6E+01 | 5.619 2E+01 | 4.168 8E+01 | 2.684 4E+01 | 5.691 2E+01 | 6.924 4E+01 |
Std | 1.271 9E+01 | 1.045 2E+01 | 1.222 4E+01 | 6.595 7E+00 | 1.421 6E+01 | 8.154 5E+00 | 9.639 3E+00 | 1.072 5E+01 | 1.516 7E+01 | |
Rank | 3 | 8 | 9 | 6 | 4 | 2 | 1 | 5 | 7 | |
F6 | Mean | 3.549 2E-08 | 1.136 9E-13 | 1.114 6E-13 | 1.136 9E-13 | 8.931 7E-02 | 7.548 1E-06 | 3.575 1E-06 | 2.447 0E-01 | 7.279 1E-02 |
Std | 1.563 3E-07 | 0 | 1.591 9E-14 | 0 | 1.395 5E-01 | 3.988 0E-05 | 7.608 8E-06 | 8.162 0E-02 | 2.706 7E-01 | |
Rank | 4 | 2 | 1 | 2 | 8 | 6 | 5 | 9 | 7 | |
F7 | Mean | 8.725 2E+01 | 1.587 0E+02 | 1.861 4E+02 | 9.972 5E+01 | 9.494 5E+01 | 7.244 8E+01 | 4.565 3E+01 | 8.910 6E+01 | 9.923 0E+01 |
Std | 1.466 9E+01 | 8.904 8E+00 | 9.520 3E+00 | 6.428 5E+00 | 1.987 9E+01 | 7.349 5E+00 | 8.393 2E+00 | 1.093 5E+01 | 2.284 6E+01 | |
Rank | 3 | 8 | 9 | 7 | 5 | 2 | 1 | 4 | 6 | |
F8 | Mean | 5.396 4E+01 | 1.282 6E+02 | 1.484 9E+02 | 5.929 9E+01 | 5.394 2E+01 | 4.419 4E+01 | 2.668 8E+01 | 5.939 8E+01 | 6.350 1E+01 |
Std | 1.239 6E+01 | 1.138 0E+01 | 1.079 4E+01 | 6.078 8E+00 | 1.279 2E+01 | 6.583 4E+00 | 7.426 2E+00 | 1.066 3E+01 | 1.585 1E+01 | |
Rank | 4 | 8 | 9 | 5 | 3 | 2 | 1 | 6 | 7 | |
F9 | Mean | 1.093 6E-01 | 9.492 3E-01 | 1.755 5E-03 | 4.012 5E-14 | 8.355 6E+01 | 3.083 9E-01 | 1.241 9E-02 | 7.826 7E+00 | 1.130 3E+02 |
Std | 1.740 0E-01 | 1.290 0E+00 | 1.253 6E-02 | 5.487 0E-14 | 6.264 3E+01 | 8.413 9E-01 | 6.551 0E-02 | 1.181 5E+01 | 1.011 7E+02 | |
Rank | 4 | 6 | 2 | 1 | 8 | 5 | 3 | 7 | 9 | |
F10 | Mean | 2.553 2E+03 | 4.439 6E+03 | 6.785 2E+03 | 3.291 1E+03 | 2.325 3E+03 | 2.326 7E+03 | 1.971 7E+03 | 2.436 9E+03 | 3.283 7E+03 |
Std | 4.880 5E+02 | 2.200 9E+02 | 3.086 3E+02 | 2.728 4E+02 | 4.924 7E+02 | 2.845 7E+02 | 6.104 3E+02 | 4.454 2E+02 | 5.998 8E+02 | |
Rank | 5 | 8 | 9 | 7 | 2 | 3 | 1 | 4 | 6 | |
F11 | Mean | 2.853 7E+01 | 5.334 7E+01 | 5.331 9E+01 | 3.743 0E+01 | 1.003 2E+02 | 4.134 3E+01 | 6.979 7E+01 | 2.961 2E+01 | 1.079 6E+02 |
Std | 2.041 6E+01 | 3.327 5E+01 | 3.000 7E+01 | 2.367 2E+01 | 4.310 1E+01 | 2.799 4E+01 | 2.794 5E+01 | 1.034 7E+01 | 4.660 0E+01 | |
Rank | 1 | 6 | 5 | 3 | 8 | 4 | 7 | 2 | 9 | |
F12 | Mean | 8.512 7E+03 | 2.098 7E+06 | 7.184 9E+04 | 1.386 6E+05 | 6.862 9E+04 | 1.114 3E+06 | 2.064 1E+04 | 1.598 3E+04 | 5.157 4E+05 |
Std | 9.175 4E+03 | 1.400 7E+06 | 4.456 8E+04 | 9.209 7E+04 | 3.825 2E+04 | 8.142 2E+05 | 8.867 3E+03 | 4.043 4E+03 | 6.505 1E+05 | |
Rank | 1 | 9 | 5 | 6 | 4 | 8 | 3 | 2 | 7 | |
F13 | Mean | 5.010 8E+01 | 1.030 8E+04 | 1.110 8E+04 | 8.126 5E+03 | 1.121 1E+04 | 4.606 3E+03 | 1.155 2E+04 | 2.045 0E+02 | 1.286 5E+04 |
Std | 2.426 2E+01 | 9.148 1E+03 | 1.387 6E+04 | 7.806 6E+03 | 1.053 5E+04 | 4.859 0E+03 | 1.100 2E+04 | 2.702 8E+01 | 9.090 5E+03 | |
Rank | 1 | 5 | 6 | 4 | 7 | 3 | 8 | 2 | 9 | |
F14 | Mean | 5.499 5E+01 | 4.081 1E+04 | 3.449 2E+03 | 4.924 0E+03 | 4.323 8E+03 | 7.120 4E+04 | 1.863 3E+03 | 6.198 5E+01 | 5.316 5E+02 |
Std | 1.467 5E+01 | 3.111 7E+04 | 2.274 2E+03 | 3.290 2E+03 | 5.715 9E+03 | 5.932 3E+04 | 1.553 0E+03 | 8.664 7E+00 | 7.877 1E+02 | |
Rank | 1 | 8 | 5 | 7 | 6 | 9 | 4 | 2 | 3 | |
F15 | Mean | 4.210 7E+01 | 1.519 0E+03 | 5.852 8E+03 | 4.994 4E+03 | 2.167 6E+03 | 2.201 3E+03 | 2.506 0E+03 | 5.163 4E+01 | 1.340 9E+03 |
Std | 3.254 0E+01 | 1.346 3E+03 | 5.709 0E+03 | 6.646 8E+03 | 3.017 8E+03 | 1.975 6E+03 | 3.159 9E+03 | 1.071 3E+01 | 1.638 5E+03 | |
Rank | 1 | 4 | 9 | 8 | 5 | 6 | 7 | 2 | 3 | |
F16 | Mean | 4.516 2E+02 | 7.471 4E+02 | 8.411 8E+02 | 3.964 3E+02 | 5.607 2E+02 | 4.939 2E+02 | 5.143 2E+02 | 4.482 3E+02 | 8.792 4E+02 |
Std | 1.913 8E+02 | 1.433 0E+02 | 1.918 0E+02 | 1.193 2E+02 | 2.085 0E+02 | 1.730 9E+02 | 1.621 2E+02 | 1.344 3E+02 | 3.267 9E+02 | |
Rank | 3 | 7 | 8 | 1 | 6 | 4 | 5 | 2 | 9 | |
F17 | Mean | 5.885 0E+01 | 1.725 5E+02 | 1.586 9E+02 | 8.164 2E+01 | 8.768 4E+01 | 1.411 6E+02 | 1.751 5E+02 | 6.954 4E+01 | 3.789 9E+02 |
Std | 2.351 5E+01 | 7.985 9E+01 | 3.909 2E+01 | 2.203 7E+01 | 9.128 9E+01 | 8.502 6E+01 | 6.268 8E+01 | 1.729 6E+01 | 2.372 5E+02 | |
Rank | 1 | 7 | 6 | 3 | 4 | 5 | 8 | 2 | 9 | |
F18 | Mean | 8.919 1E+02 | 5.058 8E+05 | 4.251 1E+05 | 3.222 5E+05 | 1.003 4E+05 | 2.136 1E+05 | 6.702 6E+04 | 2.050 5E+02 | 2.719 7E+04 |
Std | 1.519 9E+03 | 2.393 0E+05 | 1.659 3E+05 | 1.219 7E+05 | 1.101 9E+05 | 1.326 1E+05 | 2.724 7E+04 | 4.753 6E+01 | 2.121 0E+04 | |
Rank | 2 | 9 | 8 | 7 | 5 | 6 | 4 | 1 | 3 | |
F19 | Mean | 1.983 6E+01 | 1.201 6E+03 | 5.896 4E+03 | 8.368 6E+03 | 5.961 2E+03 | 2.072 3E+03 | 4.236 9E+03 | 2.997 7E+01 | 5.149 1E+03 |
Std | 6.642 0E+00 | 1.171 9E+03 | 7.992 5E+03 | 9.279 5E+03 | 7.111 2E+03 | 2.168 5E+03 | 3.223 9E+03 | 3.389 7E+00 | 4.760 1E+03 | |
Rank | 1 | 3 | 7 | 9 | 8 | 4 | 5 | 2 | 6 | |
F20 | Mean | 9.986 9E+01 | 2.051 1E+02 | 1.542 3E+02 | 5.520 5E+01 | 1.298 9E+02 | 1.730 3E+02 | 1.960 3E+02 | 1.136 3E+02 | 3.029 1E+02 |
Std | 6.211 9E+01 | 9.801 8E+01 | 9.701 1E+01 | 3.541 3E+01 | 7.097 0E+01 | 7.201 5E+01 | 3.365 7E+01 | 5.241 1E+01 | 1.446 3E+02 | |
Rank | 2 | 8 | 5 | 1 | 4 | 6 | 7 | 3 | 9 | |
F21 | Mean | 2.522 7E+02 | 3.314 2E+02 | 3.429 9E+02 | 2.595 0E+02 | 2.489 6E+02 | 2.504 7E+02 | 2.308 5E+02 | 2.545 8E+02 | 2.581 5E+02 |
Std | 1.153 9E+01 | 1.023 6E+01 | 1.094 4E+01 | 7.669 0E+00 | 1.319 5E+01 | 8.444 2E+00 | 9.077 0E+00 | 3.324 7E+01 | 1.564 0E+01 | |
Rank | 4 | 8 | 9 | 7 | 2 | 3 | 1 | 5 | 6 | |
F22 | Mean | 1.000 0E+02 | 2.006 4E+03 | 1.000 0E+02 | 1.000 0E+02 | 1.022 8E+02 | 1.021 1E+03 | 1.000 0E+02 | 1.002 2E+02 | 1.914 7E+02 |
Std | 1.960 5E-13 | 2.233 3E+03 | 1.004 7E-13 | 2.310 0E-13 | 3.227 9E+00 | 1.287 2E+03 | 1.827 4E-13 | 4.391 7E-02 | 5.626 6E+02 | |
Rank | 3 | 9 | 1 | 4 | 6 | 8 | 2 | 5 | 7 | |
F23 | Mean | 3.961 5E+02 | 4.716 4E+02 | 4.839 3E+02 | 4.032 3E+02 | 4.147 2E+02 | 4.024 7E+02 | 3.765 4E+02 | 3.895 9E+02 | 4.337 5E+02 |
Std | 4.460 9E+01 | 1.047 0E+01 | 1.220 9E+01 | 5.634 8E+00 | 1.874 2E+01 | 8.168 7E+00 | 1.295 4E+01 | 6.878 7E+01 | 2.764 0E+01 | |
Rank | 3 | 8 | 9 | 5 | 6 | 4 | 1 | 2 | 7 | |
F24 | Mean | 4.919 9E+02 | 6.028 4E+02 | 5.664 8E+02 | 4.743 0E+02 | 4.816 9E+02 | 4.984 0E+02 | 4.445 8E+02 | 4.897 2E+02 | 4.927 7E+02 |
Std | 2.102 7E+01 | 1.297 3E+01 | 1.234 4E+01 | 6.005 5E+00 | 2.061 0E+01 | 1.389 9E+01 | 1.260 3E+01 | 1.659 7E+01 | 2.642 7E+01 | |
Rank | 5 | 9 | 8 | 2 | 3 | 7 | 1 | 4 | 6 | |
F25 | Mean | 3.868 8E+02 | 3.873 4E+02 | 3.868 8E+02 | 3.869 1E+02 | 4.012 4E+02 | 3.877 9E+02 | 3.876 3E+02 | 3.837 4E+02 | 4.304 7E+02 |
Std | 5.332 6E-01 | 4.910 6E-01 | 5.092 3E-01 | 7.552 4E-02 | 1.948 9E+01 | 1.131 9E+00 | 4.084 3E-01 | 1.824 6E-01 | 2.850 3E+01 | |
Rank | 3 | 5 | 2 | 4 | 8 | 7 | 6 | 1 | 9 | |
F26 | Mean | 8.693 4E+02 | 2.186 6E+03 | 2.006 8E+03 | 1.482 1E+03 | 1.734 4E+03 | 1.533 7E+03 | 4.335 8E+02 | 2.505 1E+02 | 1.401 0E+03 |
Std | 6.524 9E+02 | 4.370 8E+02 | 1.991 4E+02 | 7.201 5E+01 | 7.134 7E+02 | 1.905 1E+02 | 3.933 7E+02 | 4.111 2E+01 | 1.203 2E+03 | |
Rank | 3 | 9 | 8 | 5 | 7 | 6 | 2 | 1 | 4 | |
F27 | Mean | 5.023 9E+02 | 5.090 4E+02 | 4.992 2E+02 | 4.980 7E+02 | 5.428 9E+02 | 5.074 4E+02 | 5.100 2E+02 | 5.128 6E+02 | 5.369 5E+02 |
Std | 1.103 9E+01 | 4.598 6E+00 | 7.983 4E+00 | 4.727 0E+00 | 1.708 6E+01 | 3.624 2E+00 | 1.101 0E+01 | 6.163 2E+00 | 1.463 8E+01 | |
Rank | 3 | 5 | 2 | 1 | 9 | 4 | 6 | 7 | 8 | |
F28 | Mean | 3.296 1E+02 | 3.731 3E+02 | 3.840 9E+02 | 3.228 1E+02 | 3.325 7E+02 | 4.136 4E+02 | 3.871 8E+02 | 3.649 2E+02 | 5.207 6E+02 |
Std | 4.869 7E+01 | 5.294 7E+01 | 4.324 8E+01 | 3.788 0E+01 | 5.216 5E+01 | 2.557 7E+01 | 4.719 4E+01 | 3.247 7E+01 | 4.453 9E+01 | |
Rank | 2 | 5 | 6 | 1 | 3 | 8 | 7 | 4 | 9 | |
F29 | Mean | 5.079 2E+02 | 7.727 6E+02 | 6.200 0E+02 | 5.185 1E+02 | 5.582 6E+02 | 5.477 8E+02 | 4.943 9E+02 | 5.438 5E+02 | 6.830 5E+02 |
Std | 5.261 8E+01 | 7.822 4E+01 | 6.108 3E+01 | 3.485 9E+01 | 1.004 0E+02 | 8.196 0E+01 | 4.454 2E+01 | 5.424 1E+01 | 1.857 9E+02 | |
Rank | 2 | 9 | 7 | 3 | 6 | 5 | 1 | 4 | 8 | |
F30 | Mean | 2.352 6E+03 | 1.831 0E+04 | 5.756 5E+03 | 5.940 5E+03 | 5.014 7E+03 | 4.967 1E+03 | 4.066 7E+03 | 3.685 5E+03 | 5.778 6E+03 |
Std | 3.379 4E+02 | 1.051 6E+04 | 2.437 8E+03 | 2.315 8E+03 | 1.971 2E+03 | 2.093 4E+03 | 1.795 3E+03 | 3.304 2E+02 | 1.291 7E+04 | |
Rank | 1 | 9 | 6 | 8 | 5 | 4 | 3 | 2 | 7 | |
排名第1 的个数 | 11 | 0 | 2 | 5 | 0 | 0 | 8 | 4 | 0 | |
平均排名 | 2.37 | 6.90 | 6.17 | 4.77 | 5.30 | 5.27 | 3.87 | 3.57 | 6.77 | |
总排名 | 1 | 9 | 7 | 4 | 6 | 5 | 3 | 2 | 8 |
算法 | 平均运行时间/s | 排名 |
---|---|---|
HBO | 9.500 6 | 4 |
DDHBO | 3.445 0 | 2 |
MEGWO | 3.801 6 | 3 |
HGWOP | 3.287 3 | 1 |
表5 4个算法的平均时间对比
Tab. 5 Average running time comparison of 4 algorithms
算法 | 平均运行时间/s | 排名 |
---|---|---|
HBO | 9.500 6 | 4 |
DDHBO | 3.445 0 | 2 |
MEGWO | 3.801 6 | 3 |
HGWOP | 3.287 3 | 1 |
算法对比 | p-value | R+ | R- | n/w/t/l |
---|---|---|---|---|
DDHBO vs HBO | 0.000 002 | 464 | 1 | 30/29/0/1 |
DDHBO vs WRBBO | 0.000 006 | 442 | 23 | 30/26/1/3 |
DDHBO vs DEBBO | 0.000 660 | 390 | 75 | 30/22/1/7 |
DDHBO vs SaDE | 0.000 053 | 429 | 36 | 30/26/0/4 |
DDHBO vs SE04 | 0.000 174 | 415 | 50 | 30/25/0/5 |
DDHBO vs HGWOP | 0.029 770 | 333 | 132 | 30/19/1/10 |
DDHBO vs MEGWO | 0.019 569 | 346 | 119 | 30/22/0/8 |
DDHBO vs MPSO | 0.000 002 | 465 | 0 | 30/30/0/0 |
表6 Wilcoxon符号秩检验结果
Tab. 6 Wilcoxon sign rank test results
算法对比 | p-value | R+ | R- | n/w/t/l |
---|---|---|---|---|
DDHBO vs HBO | 0.000 002 | 464 | 1 | 30/29/0/1 |
DDHBO vs WRBBO | 0.000 006 | 442 | 23 | 30/26/1/3 |
DDHBO vs DEBBO | 0.000 660 | 390 | 75 | 30/22/1/7 |
DDHBO vs SaDE | 0.000 053 | 429 | 36 | 30/26/0/4 |
DDHBO vs SE04 | 0.000 174 | 415 | 50 | 30/25/0/5 |
DDHBO vs HGWOP | 0.029 770 | 333 | 132 | 30/19/1/10 |
DDHBO vs MEGWO | 0.019 569 | 346 | 119 | 30/22/0/8 |
DDHBO vs MPSO | 0.000 002 | 465 | 0 | 30/30/0/0 |
1 | 张新明,王豆豆,陈海燕,等.强化最优和最差狼的郊狼优化算法及其二次指派问题应用[J].计算机应用, 2019, 39(10): 2985-2991. 10.11772/j.issn.1001-9081.2019030454 |
ZHANG X M, WANG D D, CHEN H Y, et al. Best and worst coyotes strengthened coyote optimization algorithm and its application to quadratic assignment problem[J]. Journal of Computer Applications, 2019, 39(10): 2985-2991. 10.11772/j.issn.1001-9081.2019030454 | |
2 | ZHANG Q, GAO J W, DONG H H, et al. WPD and DE/BBO-RBFNN for solution of rolling bearing fault diagnosis[J]. Neurocomputing, 2018, 312: 27-33. 10.1016/j.neucom.2018.05.014 |
3 | ZHANG X M, LIN Q Y, MAO W T, et al. Hybrid particle swarm and grey wolf optimizer and its application to clustering optimization[J]. Applied Soft Computing, 2021, 101: No.107061. 10.1016/j.asoc.2020.107061 |
4 | 张新明,康强,王霞,等.差分迁移和趋优变异的生物地理学优化算法[J].小型微型计算机系统, 2018, 39(6): 1168-1177. 10.3969/j.issn.1000-1220.2018.06.010 |
ZHANG X M, KANG Q, WANG X, et al. Biogeography-based optimization with differential migration and global-best mutation[J]. Journal of Chinese Computer Systems, 2018, 39(6): 1168-1177. 10.3969/j.issn.1000-1220.2018.06.010 | |
5 | 张晓凤,王秀英.灰狼优化算法研究综述[J].计算机科学, 2019, 46(3): 30-38. 10.11896/j.issn.1002-137X.2019.03.004 |
ZHANG X F, WANG X Y. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46(3): 30-38. 10.11896/j.issn.1002-137X.2019.03.004 | |
6 | ZHANG X M, YANG F Y. Information guiding and sharing enhanced simultaneous heat transfer search and its application to k-means optimization[J]. Applied Soft Computing, 2021, 109: No.107476. 10.1016/j.asoc.2021.107476 |
7 | ASKARI Q, SAEED M, YOUNAS I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization[J]. Expert Systems with Applications, 2020, 161: No.113702. 10.1016/j.eswa.2020.113702 |
8 | TU Q, CHEN X C, LIU X C. Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection[J]. IEEE Access, 2019, 7: 78012-78028. 10.1109/access.2019.2921793 |
9 | AWAD N H, ALI M Z, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization[R]. Zhengzhou: Zhengzhou University, 2016: 1-34. 10.1109/cec.2016.7744188 |
10 | DRAA A, BOUZOUBIA S, BOUKHALFA I. A sinusoidal differential evolution algorithm for numerical optimization[J]. Applied Soft Computing, 2015, 27: 99-126. 10.1016/j.asoc.2014.11.003 |
11 | QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417. 10.1109/tevc.2008.927706 |
12 | TANG D Y. Spherical evolution for solving continuous optimization problems[J]. Applied Soft Computing, 2019, 81: No.105499. 10.1016/j.asoc.2019.105499 |
13 | ZHANG X M, WANG D D, CHEN H Y. Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation[J]. IEEE Access, 2019, 7: 28810-28825. 10.1109/access.2019.2901849 |
14 | TU Q, CHEN X C, LIU X C. Multi-strategy ensemble grey wolf optimizer and its application to feature selection[J]. Applied Soft Computing, 2019, 76: 16-30. 10.1016/j.asoc.2018.11.047 |
15 | PHUNG M D, HA Q P. Motion-encoded particle swarm optimization for moving target search using UAVs[J]. Applied Soft Computing, 2020, 97(Pt B): No.106705. 10.1016/j.asoc.2020.106705 |
[1] | 盖荣丽, 高守传, 李明霞. 粒子群优化算法求解最优控制点的非均匀有理B样条曲线拟合[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2177-2183. |
[2] | 张仲华, 赵福媛, 郭钧枫, 赵高长. 柯西自适应回溯搜索与最小二乘支持向量机的集成预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1829-1836. |
[3] | 聂青青, 万定生, 朱跃龙, 李致家, 姚成. 基于时域卷积网络的水文模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1756-1761. |
[4] | 孟晗, 马良, 刘勇. 融合学习心理学的人类学习优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1367-1374. |
[5] | 张金泉, 徐寿伟, 李信诚, 王重洋, 徐景芝. 基于正交自适应鲸鱼优化的云计算任务调度[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1516-1523. |
[6] | 高兵, 郑雅, 秦静, 邹启杰, 汪祖民. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1201-1206. |
[7] | 聂方鑫, 王宇嘉, 贾欣. 教与学信息交互粒子群优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 874-882. |
[8] | 张京, 朱爱红. 基于遗传算法和粒子群优化的列车自动驾驶速度曲线优化方法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 599-605. |
[9] | 张孟健, 王德光, 汪敏, 杨靖. 求解工程约束问题的新型智能优化算法及展望[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 534-541. |
[10] | 王大为, 刘新浩, 李竹, 芦宾, 郭爱心, 柴国强. 离散蝠鲼觅食优化算法及在频谱分配中的应用[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 215-222. |
[11] | 李开荣, 刘爽, 胡倩倩, 唐亦媛. 基于转角约束的改进蚁群优化算法路径规划[J]. 计算机应用, 2021, 41(9): 2560-2568. |
[12] | 陈俊, 何庆. 基于余弦相似度的改进蝴蝶优化算法[J]. 计算机应用, 2021, 41(9): 2668-2677. |
[13] | 李蒙蒙, 秦伟, 刘艺, 刁兴春. 结合头脑风暴优化的混合蚁群优化算法[J]. 计算机应用, 2021, 41(8): 2412-2417. |
[14] | 汤安迪, 韩统, 徐登武, 谢磊. 混沌精英哈里斯鹰优化算法[J]. 计算机应用, 2021, 41(8): 2265-2272. |
[15] | 张盟, 郭健全. 需求和回收不确定的闭环供应链渠道结构选择[J]. 计算机应用, 2021, 41(7): 2100-2107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||