《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (8): 2519-2527.DOI: 10.11772/j.issn.1001-9081.2021061104

• 先进计算 • 上一篇    

差分扰动的堆优化算法

张新明1,2(), 温少晨1, 刘尚旺1,2   

  1. 1.河南师范大学 计算机与信息工程学院, 河南 新乡 453007
    2.智慧商务与物联网技术河南省工程实验室(河南师范大学), 河南 新乡 453007
  • 收稿日期:2021-07-01 修回日期:2021-09-11 接受日期:2021-09-28 发布日期:2022-08-09 出版日期:2022-08-10
  • 通讯作者: 张新明
  • 作者简介:张新明(1963—),男,湖北孝感人,教授,硕士,CCF会员,主要研究方向:智能优化算法、图像分割;
    温少晨(1997—),女,河南濮阳人,硕士研究生,主要研究方向:智能优化算法、图像分割;
    刘尚旺(1973—),男,河南新乡人,副教授,博士,主要研究方向:图像处理、计算机视觉。
  • 基金资助:
    河南省高等学校重点科研项目(19A520026)

Differential disturbed heap-based optimizer

Xinming ZHANG1,2(), Shaochen WEN1, Shangwang LIU1,2   

  1. 1.College of Computer and Information Engineering,Henan Normal University,Xinxiang Henan 453007,China
    2.Engineering Lab of Intelligence Business and Internet of Things of Henan Province (Henan Normal University),Xinxiang Henan 453007,China
  • Received:2021-07-01 Revised:2021-09-11 Accepted:2021-09-28 Online:2022-08-09 Published:2022-08-10
  • Contact: Xinming ZHANG
  • About author:ZHANG Xinming, born in 1963, M. S., professor. His research interests include intelligent optimization algorithm, image segmentation.
    WEN Shaochen, born in 1997, M. S. candidate. Her research interests include intelligent optimization algorithm, image segmentation.
    LIU Shangwang, born in 1973, Ph. D., associate professor. His research interests include image processing, computer vision.
  • Supported by:
    Key Scientific Research Project of Higher Education Institutions of Henan Province(19A520026)

摘要:

针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO——DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.445 0 s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。

关键词: 优化算法, 元启发式算法, 堆优化算法, 全局最优解, 差分扰动

Abstract:

In order to solve the problems, such as insufficient search ability and low search efficiency of Heap-Based optimizer (HBO) in solving complex problems, a Differential disturbed HBO (DDHBO) was proposed. Firstly, a random differential disturbance strategy was proposed to update the best individual’s position to solve the problem of low search efficiency caused by not updating of this individual by HBO. Secondly, a best worst differential disturbance strategy was used to update the worst individual’s position and strengthen its search ability. Thirdly, the ordinary individual’s position was updated by a multi-level differential disturbance strategy to strengthen information communication among individuals between multiple levels and improve the search ability. Finally, a dimension-based differential disturbance strategy was proposed for other individuals to improve the probability of obtaining effective solutions in initial stage of original updating model. Experimental results on a large number of complex functions from CEC2017 show that compared with HBO, DDHBO has better optimization performance on 96.67% functions and less average running time (3.445 0 s), and compared with other state-of-the-art algorithms, such as Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization (WRBBO), Differential Evolution and Biogeography-Based Optimization (DEBBO), Hybrid Particle Swarm Optimization and Grey Wolf Optimizer (HGWOP), etc., DDHBO also has significant advantages.

Key words: optimization algorithm, meta-heuristic algorithm, Heap-Based Optimizer (HBO), global best solution, differential disturbance

中图分类号: