[1] PATEL N U, LIND K E, MCKINNEY K, et al. Clinical validation of a predictive model for the presence of cervical lymph node metastasis in papillary thyroid cancer[J]. American Journal of Neuroradiology, 2018, 39(4):756-761. [2] BEJNORDI B E, VETA M, VAN DIEST P J, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. Jama, 2017, 318(22):2199-2210. [3] 魏骏,何凌,车坤,等.CT图像的颈部淋巴结半自动分割算法[J].计算机工程与设计,2015,36(11):3014-3018.(WEI J, HE L, CHE K, et al. Semi-automatic detection and segmentation of neck lymph nodes in CT image[J]. Computer Engineering and Design, 2015, 36(11):3014-3018.) [4] KAN Y, DONG D, ZHANG Y, et al. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer[J]. Journal of Magnetic Resonance Imaging, 2018, 49(1):304-310. [5] ESTEVES C, ALLEN-BLANCHETTE C, MAKADIA A, et al. Learning SO(3) equivariant representations with spherical CNNs[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham:Springer, 2018:54-70. [6] ELSAYED G F, SHANKAR S, CHEUNG B, et al. Adversarial examples that fool both computer vision and time-limited humans[C]//Proceedings of the 32nd Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2018:3914-3924. [7] RAJPURKAR P, IRVIN J, ZHU K, et al. CheXNet:radiologist-level pneumonia detection on chest X-rays with deep learning[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1711.05225.pdf. [8] RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1707.01836.pdf. [9] 秦品乐,李鹏波,曾建潮,等.基于级联全卷积神经网络的颈部淋巴结自动识别算法[J].计算机应用,2019,39(10):2915-2922.(QIN P L, LI P B, ZENG J C, et al. Automatic recognition algorithm of cervical lymph nodes using cascaded fully convolutional neural networks[J]. Journal of Computer Applications, 2019, 39(10):2915-2922.) [10] 苗光,李朝锋.二维和三维卷积神经网络相结合的CT图像肺结节检测方法[J].激光与光电子学进展,2018,55(5):129-137.(MIAO G, LI C F. Detection of pulmonary nodules CT images combined with two-dimensional and three-dimensional convolution neural networks[J]. Laser and Optoelectronics Progress, 2018, 55(5):129-137.) [11] DING J, LI A, HU Z, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham:Springer, 2017:559-567. [12] ZHU W, VANG Y S, HUANG Y, et al. DeepEM:deep 3D convNets with EM for weakly supervised pulmonary nodule detection[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2018:812-820. [13] TANG H, LIU X, XIE X. An end-to-end framework for integrated pulmonary nodule detection and false positive reduction[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1903.09880.pdf. [14] TANG H, KIM D R, XIE X. Automated pulmonary nodule detection using 3D deep convolutional neural networks[C]//Proceedings of the IEEE 15th International Symposium on Biomedical Imaging. Piscataway:IEEE, 2018:523-526. [15] ZHU W, LIU C, FAN W, et al. DeepLung:3D deep convolutional nets for automated pulmonary nodule detection and classification[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1709.05538.pdf. [16] HAMIDIAN S, SAHINER B, PETRICK N, et al. 3D convolutional neural network for automatic detection of lung nodules in chest CT[C]//Proceedings of the Medical Imaging 2017:Computer-Aided Diagnosis, SPIE 10134. Bellingham, WA:SPIE, 2017:Article No. 1013409. [17] PEZESHK A, HAMIDIAN S, PETRICK N, et al. 3D convolutional neural networks for automatic detection of pulmonary nodules in chest CT[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5):2080-2090. [18] WANG D, KHOSLA A, GARGEYA R, et al. Deep learning for identifying metastatic breast cancer[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1606.05718.pdf. [19] KHOSRAVAN N, BAGCI U. S4ND:single-shot single-scale lung nodule detection[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11071. Cham:Springer, 2018:794-802. [20] OZDEMIR O, RUSSELL R L, BERLIN A A. A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1902.03233.pdf. [21] LI X, WANG W, HU X, et al. Selective kernel networks[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1903.06586.pdf. [22] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2921-2929. [23] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. https://arxiv.org/abs/1709.01507. |