计算机应用 ›› 2019, Vol. 39 ›› Issue (12): 3535-3540.DOI: 10.11772/j.issn.1001-9081.2019061069

• 人工智能 • 上一篇    下一篇

基于自适应感受野机制的颈部淋巴结自动识别算法

秦品乐1, 李鹏波1, 张瑞平2, 曾建潮1, 刘仕杰3, 徐少伟1   

  1. 1. 中北大学 大数据学院, 太原 030051;
    2. 山西白求恩医院, 太原 030001;
    3. 山西医科大学第一医院, 太原 030001
  • 收稿日期:2019-06-24 修回日期:2019-08-31 出版日期:2019-12-10 发布日期:2019-10-15
  • 作者简介:秦品乐(1978-),男,山西长治人,副教授,博士,主要研究方向:大数据、机器视觉、三维重建;李鹏波(1995-),男,山西运城人,硕士研究生,主要研究方向:机器学习、计算机视觉、数字图像处理;张瑞平(1975-),男,山西太原人,教授,博士生导师,博士,主要研究方向:分子影像学、纳米医学;曾建潮(1963-),男,山西太原人,教授,博士,博士生导师,主要研究方向:复杂系统的维护决策和健康管理;刘仕杰(1990-),男,河北邢台人,硕士研究生,主要研究方向:分子影像学、纳米医学;徐少伟(1995-),男,山西太原人,硕士研究生,主要研究方向:机器学习、计算机视觉、数字图像处理。

Automatic recognition algorithm of cervical lymph nodes using adaptive receptive field mechanism

QIN Pinle1, LI Pengbo1, ZHANG Ruiping2, ZENG Jianchao1, LIU Shijie3, XU Shaowei1   

  1. 1. School of Data Science, North University of China, Taiyuan Shanxi 030051, China;
    2. Shanxi Bethune Hospital, Taiyuan Shanxi 030001, China;
    3. First Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
  • Received:2019-06-24 Revised:2019-08-31 Online:2019-12-10 Published:2019-10-15
  • Contact: 曾建潮

摘要: 针对目前应用于医学影像目标检测的深度学习网络模型仅拥有固定的感受野,无法针对形态尺度差异明显的颈部淋巴结进行有效检测的问题,提出了一种新的基于自适应感受野机制的识别算法,将深度学习首次应用于完全三维医学图像的颈部淋巴结自动识别中。首先,采用半随机采样方法对医学序列图像进行裁剪,生成基于网格的局部图像块及对应真值标签;然后,通过局部图像块及标签构建并训练基于自适应感受野机制的DeepNode网络;最后,利用预训练的DeepNode网络模型进行预测,通过输入整体序列图像,可以端到端且快速地获得整体序列对应的颈部淋巴结识别结果。在颈部淋巴结数据集中,采用DeepNode网络识别颈部淋巴结的召回率可达98.13%,精确率可达97.38%,每次扫描的假阳性数量仅为29,同时耗时相对较短。实验结果分析表明,与当前表现优良的二维与三维卷积神经网络相结合的算法、三维通用目标检测算法、基于弱监督定位的识别算法等相比,所提算法可以实现颈部淋巴结的自动识别,并取得最优的识别效果。该算法端到端,简单高效,易于扩展到其他医学图像的三维目标检测任务中,可应用于临床的诊断和治疗。

关键词: 颈部淋巴结检测, 计算机辅助诊断, 注意力机制, 自适应感受野, 三维医学影像

Abstract: Aiming at the problem that the deep learning network model applied to medical image target detection only has a fixed receptive field and cannot effectively detect the cervical lymph nodes with obvious morphological and scale differences, a new recognition algorithm based on adaptive receptive field mechanism was proposed, applying deep learning to the automatic recognition of cervical lymph nodes in complete three-dimensional medical images at the first time. Firstly, the semi-random sampling method was used to crop the medical sequence images to generate the grid-based local image blocks and the corresponding truth labels. Then, the DeepNode network based on the adaptive receptive field mechanism was constructed and trained through the local image blocks and labels. Finally, the trained DeepNode network model was used for prediction. By inputting the whole sequence images, the cervical lymph node recognition results corresponding to the whole sequence was obtained end-to-end and quickly. On the cervical lymph node dataset, the cervical lymph node recognition using the DeepNode network has the recall rate of 98.13%, the precision of 97.38%, and the number of false positives per scan is only 29, and the time consumption is relatively shorter. The analysis of the experimental results shows that compared with current algorithms such as the combination of two-dimensional and three-dimensional convolutional neural networks, the general three-dimensional object detection and the weak supervised location based recognition, the proposed algorithm can realize the automatic recognition of cervical lymph nodes and obtain the best recognition results. The algorithm is end-to-end, simple and efficient, easy to be extended to three-dimensional target detection tasks for other medical images and can be applied to clinical diagnosis and treatment.

Key words: cervical lymph node detection, Computer-Aided Diagnosis (CAD), attention mechanism, adaptive receptive field, three-dimensional medical image

中图分类号: