[1] 中国互联网络信息中心. 第43次中国互联网络发展状况统计报告[R]. 北京:中国互联网络信息中心,2019:2.(China Internet Network Information Center. The 43rd statistical report on the development of Internet in China[R]. Beijing:CNNIC,2019:2.) [2] MOORE A W,PAPAGIANNAKI K. Toward the accurate identification of network applications[C]//Proceedings of the 2005 International Workshop on Passive and Active Network Measurement, LNCS 3431. Berlin:Springer,2005:41-54. [3] TEUFL P,PAYER U,AMLING M,et al. InFeCT-Network traffic classification[C]//Proceedings of the 7th International Conference on Networking. Piscataway:IEEE,2008:439-444. [4] WANG Y,XIANG Y,ZHOU W,et al. Generating regular expression signatures for network traffic classification in trusted network management[J]. Journal of Network and Computer Applications, 2012,35(3):992-1000. [5] LEE S,KIM H,BARMAN D,et al. NeTraMark:a network traffic classification benchmark[J]. ACM SIGCOMM Computer Communication Review,2011,41(1):22-30. [6] JIN Y,DUFFIELD N,HAFFNER P,et al. Inferring applications at the network layer using collective traffic statistics[J]. ACM SIGMETRICS Performance Evaluation Review,2010,38(1):351-352. [7] CABALLERO J,YIN H,LIANG Z,et al. Polyglot:automatic extraction of protocol message format using dynamic binary analysis[C]//Proceedings of the 14th ACM Conference on Computer and Communication Security. New York:ACM,2007:317-329. [8] MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[J]. ACM SIGMETRICS Performance Evaluation Review,2005,33(1):50-60. [9] ESTE A,GRINGOLI F,SALGARELLI L. On-line SVM traffic classification[C]//Proceedings of the 7th International Wireless Communications and Mobile Computing Conference. Piscataway:IEEE,2011:1778-1783. [10] 赵双, 陈曙晖. 基于机器学习的流量识别技术综述与展望[J]. 计算机工程与科学,2018,40(10):1746-1756. (ZHAO S, CHEN S H. Review:traffic identification based on machine learning[J]. Computer Engineering and Science,2018,40(10):1746-1756.) [11] DAI S,TONGAONKAR A,WANG X,et al. NetworkProfiler:towards automatic fingerprinting of Android apps[C]//Proceedings of the 32nd IEEE International Conference on Computer Communications. Piscataway:IEEE,2013:809-817. [12] XU Q,ERMAN J,GERBER A,et al. Identifying diverse usage behaviors of smartphone apps[C]//Proceedings of the 2011 Internet Measurement Conference. New York:ACM,2011:329-344. [13] TONGAONKAR A. A look at the mobile app identification landscape[J]. IEEE Internet Computing,2016,20(4):9-15. [14] RANJAN G, TONGAONKAR A, TORRES R. Approximate matching of persistent LExicon using search-engines for classifying mobile app traffic[C]//Proceedings of the 35th IEEE International Conference on Computer Communications. Piscataway:IEEE, 2016:1-9. [15] CHEN Z,YU B,ZHANG Y,et al. Automatic mobile application traffic identification by convolutional neural networks[C]//Proceedings of the 2016 IEEE International Conference on Trust, Security and Privacy in Computing and Communications/International Conference on Big Data Science and Engineering/International Symposium on Parallel and Distributed Processing with Applications. Piscataway:IEEE,2016:301-307. [16] ZHAO S,CHEN S. Smartphone application identification by convolutional neural network[C]//Proceedings of the 2018 International Conference on Machine Learning and Intelligent Communications,LNICST 251. Cham:Springer,2018:105-114 [17] LE A,VARMARKEN J,LANGHOFF S,et al. AntMonitor:a system for monitoring from mobile devices[C]//Proceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and Crowdsharing of Big(Internet)Data. New York:ACM,2015:15-20. |