1 MELHEM S B , AGARWAL A , GOEL N , et al . Markov prediction model for host load detection and VM placement in live migration[J]. IEEE Access, 2018, 6:7109-7205.
2 邓维,刘方明,金海,等 . 云计算数据中心的新能源应用:研究现状与趋势[J]. 计算机学报, 2013, 36(3): 582-598. DENG W , LIU F M , JIN H , et al . Leveraging renewable energy in cloud computing datacenters: state of the art and future research[J]. Chinese Journal of Computers, 2013, 36(3): 582-598.
3 BELOGLAZOV A , ABAWAJY J , BUYYA R . Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012, 28(5): 755-768.
4 FARAHNAKIAN F , PAHIKKALA T , LILJEBERG P , et al . Utilization prediction aware VM consolidation approach for green cloud computing[C]// Proceedings of the IEEE 8th International Conference on Cloud Computing. Piscataway: IEEE, 2015: 381-388.
5 FARAHNAKIAN F , ASHRAF A , PAHIKKALA T , et al . Using ant colony system to consolidate VMs for green cloud computing[J]. IEEE Transactions on Services Computing, 2015, 8(2):187-198.
6 HALLAWI H , MEHNEN J , HE H . Multi-capacity combinatorial ordering GA in application to cloud resources allocation and efficient virtual machines consolidation[J]. Future Generation Computer Systems, 2017, 69: 1-10.
7 BRAIKI K , YOUSSEF H . Multi-objective virtual machine placement algorithm based on particle swarm optimization[C]// Proceedings of the 14th International Wireless Communications and Mobile Computing Conference. Piscataway: IEEE, 2018: 279-284.
8 章永来,周耀鉴 . 聚类算法综述[J]. 计算机应用, 2019, 39(7):1869-1882. (ZHANG Y L, ZHOU Y J. Review of clustering algorithms[J]. Journal of Computer Applications, 2019, 39(7): 1869-1882.).
9 张南,林晓勇,史晟辉,等 . 基于改进型启发式相似度模型的协同过滤推荐方法[J]. 计算机应用, 2016, 36(8):2246-2251. ZHANG N , LIN X Y , SHI S H , et al . Collaborative filtering recommendation method based on improved heuristic similarity model[J]. Journal of Computer Applications, 2016, 36(8):2246-2251.
10 YU L , CHEN L , CAI Z , et al . Stochastic load balancing for virtual resource management in datacenters[DB/OL].[2019-06-20]. http://liuhuac.github.io/pdf/Stochastic.pdf.
11 LIN H , QI X , YANG S , et al . Workload-driven VM consolidation in cloud data centers[C]// Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium. Piscataway: IEEE, 2015: 207-216.
12 YAN C , LI Z , YU X , et al . Bayesian networks-based selection algorithm for virtual machine to be migrated[C]// Proceedings of the 2016 IEEE International Conferences on Big Data and Cloud Computing/ Social Computing and Networking/ Sustainable Computing and Communications. Piscataway: IEEE, 2016:573-578.
13 WANG M , MENG X , ZHANG L . Consolidating virtual machines with dynamic bandwidth demand in data centers[C]// Proceedings of the 2011 IEEE International Conference on Computer Communications. Piscataway: IEEE, 2011: 71-75.
14 SHEN S , BEEK V VAN , IOSUP A . Statistical characterization of business-critical workloads hosted in cloud datacenters[C]// Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Piscataway: IEEE, 2015: 465-474.
15 Alibaba . Clusterdata[DB/OL].[2019-09-18]. https://github.com/alibaba/clusterdata.
16 BELOGLAZOV A , BUYYA R . Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J]. Concurrency and Computation: Practice and Experience, 2012, 24(13):1397-1420.
17 HALLAWI H , MEHNEN J , HE H . Multi-capacity combinatorial ordering GA in application to cloud resources allocation and efficient virtual machines consolidation[J]. Future Generation Computer Systems, 2017, 69: 1-10.
18 MUSTAFA S , NAZIR B , HAYAT A , et al . Resource management in cloud computing: taxonomy, prospects, and challenges[J]. Computers and Electrical Engineering, 2015, 47: 186-203.
19 BELOGLAZOV A . Energy-efficient management of virtual machines in data centers for cloud computing[D]. Melbourne: University of Melbourne, 2013:97-98
20 PARK K S , PAI V S . CoMon: a mostly-scalable monitoring system for PlanetLab[J]. ACM SIGOPS Operating Systems Review, 2006, 40(1): 65-74. |