[1] 李景刚,李纪人,黄诗峰,等.Terra/MODIS时间序列数据在湖泊水域面积动态监测中的应用研究——以洞庭湖地区为例[J].自然资源学报,2009,24(5):923-933.(LI J G, LI J R, HUANG S F, et al. Application of Terra/MODIS time series data in dynamic monitoring of lake water area variations-a case study in Dongting Lake region, China[J]. Journal of Natural Resources, 2009, 24(5):923-933.) [2] 殷亚秋,李家国,余涛,等.基于高分辨率遥感影像的面向对象水体提取方法研究[J].测绘通报,2015(1):81-85.(YIN Y Q, LI J G, YU T, et al. The study of object-oriented water body extraction method based on high resolution RS image[J]. Bulletin of Surveying and Mapping, 2015(1):81-85.) [3] 骆剑承,盛永伟,沈占锋,等.分步迭代的多光谱遥感水体信息高精度自动提取[J].遥感学报,2009,13(4):604-615.(LUO J C, SHENG Y W, SHEN Z F, et al. Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism[J]. Journal of Remote Sensing, 2009, 13(4):604-615.) [4] 王碧晴,王珂,廖伟逸.遥感图像分割下的青藏高原湖泊提取[J].遥感信息,2018,33(1):117-122.(WANG B Q, WANG K, LIAO W Y. Extraction of Qinghai-Tibet plateau lake based on remote sensing image segmentation[J]. Remote Sensing Information, 2018, 33(1):117-122) [5] 朱小强,丁建丽,夏楠,等.一种稳定阈值的湖泊水体信息提取方法[J].资源科学,2019,41(4):790-802.(ZHU X Q, DING J L, XIA N, et al. Temperature vegetation water index:a novel stabilized threshold method for lake surface water mapping[J]. Resources Science, 2019, 41(4):790-802.) [6] 夏少波,王成,习晓环,等.ICESat-2机载试验点云滤波及植被高度反演[J].遥感学报,2014,18(6):1199-1207.(XIA S B, WANG C, XI X H, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2[J]. Journal of Remote Sensing, 2014,18(6):1199-1207.) [7] ZHOU Y, TUZEL O. Voxelnet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4490-4499. [8] UY M A, LEE G H. PointNetVLAD:deep point cloud based retrieval for large-scale place recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4470-4479. [9] QI C R, SU H, MO K, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:77-85. [10] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 2017 International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2017:5099-5108 [11] WANG W, YU R, HUANG Q, et al. SGPN:similarity group proposal network for 3D point cloud instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:2569-2578. [12] SHEN Y, FENG C, YANG Y, et al. Mining point cloud local structures by kernel correlation and graph pooling[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4548-4557. [13] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4558-4567. [14] HUANG Q, WANG W, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:2626-2635. [15] HUANG J, YOU S. Point cloud labeling using 3D convolutional neural network[C]//Proceedings of the 3rd International Conference on Pattern Recognition. Piscataway:IEEE, 2016:2670-2675. [16] 袁庆,楼立志,陈玮娴.基于加权总体最小二乘的平面点云拟合方法[J].测绘通报,2011(3):1-3.(YUAN Q, LOU L Z, CHEN W X. Applying weighted total least-squares to the plane point cloud fitting of terrestrial laser scanning[J]. Bulletin of Surveying and Mapping, 2011(3):1-3.) [17] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2):214-226. [18] WHITESON S, STONE P. Evolutionary function approximation for reinforcement learning[J]. Journal of Machine Learning Research, 2006, 7:877-917 [19] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Madison:Omnipress, 2010:807-814. [20] KASS M, WITKIN A, TERZOPOULOS D. Snakes:active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331. [21] OSHER S, FEDKIW R P. Level set methods:an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2):463-502. [22] FREEMAN H. On the encoding of arbitrary geometric configurations[J]. IRE Transactions on Electronic Computers, 1961, EC-10(2):260-268. [23] 陆应骐,童韬.链码和在边界形状分析中的应用[J].中国图象图形学报,2002,7(12):1323-1328.(LU Y Q, TONG T. The application of chain code sum in the edge form analysis[J]. Journal of Image and Graphics, 2002, 7(12):1323-1328.) [24] 梁欣廉,张继贤,李海涛,等.激光雷达数据特点[J].遥感信息,2005(3):71-76.(LIANG X L, ZHANG J X, LI H T, et al. The characteristics of LIDAR data[J]. Remote Sensing Information, 2005(3):71-76.) [25] VEDALDI A, KAREL L. MatConvNet:convolutional neural networks for Matlab[C]//Proceedings of the 23rd ACM International Conference on Multimedia. New York:ACM, 2015:689-692. |