计算机应用 ›› 2019, Vol. 39 ›› Issue (12): 3450-3455.DOI: 10.11772/j.issn.1001-9081.2019081436

• 第十七届中国机器学习会议(CCML 2019)论文 • 上一篇    下一篇

基于三维卷积神经网络的湖泊提取算法

徐姗姗1, 颜超2, 高琳明1   

  1. 1. 南京林业大学 信息科学技术学院, 南京 210037;
    2. 国防科技大学 气象海洋学院, 南京 211101
  • 收稿日期:2019-04-29 修回日期:2019-08-15 出版日期:2019-12-10 发布日期:2019-09-04
  • 作者简介:徐姗姗(1988-),女,江苏扬州人,实验师,博士研究生,主要研究方向:数理统计、神经网络、点云处理;颜超(1983-),男,江苏南京人,副教授,博士研究生,主要研究方向:数理统计;高琳明(1978-),女,江苏南京人,讲师,硕士,主要研究方向:图形图像学。
  • 基金资助:
    国家重点研发计划项目(2016YFD0600101);国家自然科学基金资助项目(31770591)。

Lake extraction algorithm based on three-dimensional convolutional neural network

XU Shanshan1, YAN Chao2, GAO Linming1   

  1. 1. College of Information Science and Technology, Nanjing Forestry University, Nanjing Jiangsu 210037, China;
    2. College of Meteorology and Oceanography, National University of Defense Technology, Nanjing Jiangsu 211101, China
  • Received:2019-04-29 Revised:2019-08-15 Online:2019-12-10 Published:2019-09-04
  • Contact: 徐姗姗
  • Supported by:
    This work is partially supported by the National Key R&D Program of China (2016YFD0600101), the National Natural Science Foundation of China (31770591).

摘要: 针对现有分析湖泊几何信息算法的二维图像湖泊轮廓提取精度低的问题,提出了一种基于三维卷积神经网络的湖泊提取算法。首先,基于平整度信息从激光扫描点云中定位出候选湖泊并对输入的候选区域点云进行体素化组织,作为神经网络的输入;同时,通过深度学习技术,从候选区域中过滤非湖泊区域;然后,基于方向链码算法从点云中提取湖泊的边缘并分析其几何形状信息。实验结果表明,所提算法在提取激光扫描点云中的湖泊精度可达到96.34%,与当前在二维图像中的湖泊提取算法相比,可对目标湖泊形状信息进行计算与分析,从而为湖泊监测与管理提供方便。

关键词: 激光扫描数据, 三维卷积神经网络, 湖泊提取, 链码, 边界描述

Abstract: Aiming at the low accuracy of lake contour extraction from two-dimensional images of the existing algorithms for analyzing the geometric information of lakes, a lake extraction algorithm based on three-dimensional convolutional neural network was proposed. Firstly, based on the flatness information, the candidate lakes were located from the laser scanning point clouds, and the candidate points were organized as voxels to be an input of the neural network. Meanwhile, the non-lake areas were filtered from candidate areas by the deep learning technique. Then, based on the chain-code algorithm, contours of lakes were extracted from point clouds and their geometry information was analyzed. The experimental results show that, the accuracy of the proposed algorithm in extracting lakes from laser scanning point clouds is 96.34%, and compared with the existing extraction algorithm for two-dimensional images, the proposed algorithm can calculate and analyze the shape information of lakes, which provides convenience for lake monitoring and management.

Key words: laser scanning data, three-dimensional convolutional neural network, lake extraction, chain-code, contour description

中图分类号: