[1] BRENNER D J,HALL E J. Cancer risks from CT scans:now we have data,what next?[J]. Radiology,2012,265(2):330-331. [2] MOSER J B,SHEARD S L,EDYEAN S,et al. Radiation dose-reduction strategies in thoracic CT[J]. Clinical Radiology,2017, 72(5):407-420. [3] BRENNER D J,HALL E J. Computed tomography-an increasing source of radiation exposure[J]. New England Journal of Medicine, 2007,357(22):2277-2284. [4] PAUL N S,BLOBEL J,PREZELJ E,et al. The reduction of image noise and streak artifact in the thoracic inlet during low dose and ultra-low dose thoracic CT[J]. Physics in Medicine and Biology, 2010,55(5):No. 1363. [5] LAMBIN P,LEIJENAAR R T H,DEIST T M,et al. Radiomics:the bridge between medical imaging and personalized medicine[J]. Nature Reviews Clinical Oncology,2017,14(12):749-762. [6] HU Z,GAO J,ZHANG N,et al. An improved statistical iterative algorithm for sparse-view and limited-angle CT image reconstruction[J]. Scientific Reports,2017,7(1):No. 10747. [7] 杜毓菁, 王荣福. 全景PET/CT的研究进展及轴向视场的新突破[J]. CT理论与应用研究,2018,27(5):675-682. (DU Y J, WANG R F. Research progress of PET/CT and new breakthrough in axial field of view[J]. CT Theory and Applications,2018,27(5):675-682.) [8] SHI C T,CHANG S J,LIU Y L,et al. Noise reduction of low-dose computed tomography using the multi-resolution total variation minimization algorithm[C]//Proceedings of the Medical Imaging 2013:Physics of Medical Imaging,SPIE 8668. Bellingham,WA:SPIE,2013:No. 86682H. [9] LIU W,CAO S,CHEN Y. Seismic time-frequency analysis via empirical wavelet transform[J]. IEEE Geoscience and Remote Sensing Letters,2016,13(1):28-32. [10] DIWAKAR M,KUMAR M. Edge preservation based CT image denoising using Wiener filtering and thresholding in wavelet domain[C]//Proceedings of the 4th International Conference on Parallel,Distributed and Grid Computing. Piscataway:IEEE, 2017:332-336. [11] ZVOLANEK K,MA R,ZHOU C,et al. Still equivalent for dose calculation in the Monte Carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms[J]. Medical Physics,2017,44(5):1939-1947. [12] ABUBAKAR A,ZHAO X J,LI S T,et al. A block-matching and 3-D filtering algorithm for Gaussian noise in DoFP polarization images[J]. IEEE Sensors Journal,2018,18(18):7429-7435. [13] CHEN Y,SHI L,FENG Q,et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging,2014,33(12):2271-2292. [14] CHEN Y, LIU J, HU Y, et al. Discriminative feature representation:an effective postprocessing solution to low dose CT imaging[J]. Physics in Medicine and Biology,2017,62(6):No. 2103. [15] 蒋慧琴, 徐玉风, 马岭, 等. 一种自适应低剂量CT图像质量改善算法[J]. 郑州大学学报(工学版),2018,39(4):75-80. (JIANG H Q,XU Y F,MA L,et al. An adaptive quality improved algorithm in low dose CT images[J]. Journal of Zhengzhou University (Engineering Science),2018,39(4):75-80.) [16] HASAN M,EL-SAKKA M R. Improved BM3D image denoising using SSIM-optimized Wiener filter[J]. EURASIP Journal on Image and Video Processing,2018,2018(1):No. 25. [17] ALKINANI M H,EL-SAKKA M R. Patch-based models and algorithms for image denoising:a comparative review between patch-based images denoising methods for additive noise reduction[J]. EURASIP Journal on Image and Video Processing,2017, 2017(1):No. 58. [18] CHEN W,SHAO Y,WANG Y,et al. A novel total variation model for low-dose CT image denoising[J]. IEEE Access,2018, 6:78892-78903. [19] 何琳, 张权, 上官宏, 等. 低剂量CT图像的自适应广义总变分降噪算法[J]. 计算机应用,2016,36(1):243-247.(HE L, ZHANG Q,SHANGGUAN H,et al. Adaptive total generalized variation denoising algorithm for low-dose CT images[J]. Journal of Computer Applications,2016,36(1):243-247.) [20] 王娜, 张权, 刘祎, 等. 基于可变阶变分模型的医用低剂量CT图像去噪[J]. 北京航空航天大学学报,2019,45(9):1757-1764.(WANG N,ZHANG Q,LIU Y,et al. Medical low-dose CT image denoising based on variable order variational model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019,45(9):1757-1764.) [21] KANG E,CHANG W,YOO J,et al. Deep convolutional framelet denosing for low-dose CT via wavelet residual network[J]. IEEE Transactions on Medical Imaging,2018,37(6):1358-1369. [22] PENG Z, WANG G. Study on optimal selection of wavelet vanishing moments for ECG denoising[J]. Scientific Reports, 2017,7(1):No. 4564. [23] YANG D,HU S,LIU S,et al. Multi-focus image fusion based on block matching in 3D transform domain[J]. Journal of Systems Engineering and Electronics,2018,29(2):415-428. [24] ZHANG Y,RONG J,LU H,et al. Low-dose lung CT image restoration using adaptive prior features from full-dose training database[J]. IEEE Transactions on Medical Imaging,2017,36(12):2510-2523. [25] ZHANG Y,LU H,RONG J,et al. Adaptive non-local means on local principle neighborhood for noise artifacts reduction of low-dose CT images[J]. Medical Physics,2017,44(9):e230-e241. [26] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing,2006,15(12):3736-3745. [27] 李中源, 李光, 孙翌, 等. 一种基于全局字典学习的小动物低剂量计算机断层扫描降噪方法[J]. 生物医学工程学杂志,2016, 33(2):279-286.(LI Z Y,LI G,SUN Y,et al. A denoising method for low-does small-animal computed tomography image based on globe dictionary learning[J]. Journal of Biomedical Engineering,2016,33(2):279-286.) [28] 朱永成, 陈阳, 罗立民, 等. 基于字典学习的低剂量X-ray CT图像去噪[J]. 东南大学学报(自然科学版),2012,42(5):864-868.(ZHU Y C,CHEN Y,LUO L M,et al. Dictionary learning based denoising of low-dose X-ray CT image[J]. Journal of Southeast University(Natural Science Edition),2012,42(5):864-868.) [29] WEN B, RAVISHANKAR S, BRESLER Y. Structured overcomplete sparsifying transform learning with convergence guarantees and applications[J]. International Journal of Computer Vision,2015,114(2/3):137-167. [30] YOON H,KIM K S,KIM D,et al. Motion adaptive patch-based low-rank approach for compressed sensing cardiac cine MRI[J]. IEEE Transactions on Medical Imaging,2014,33(11):2069-2085. [31] LIU S,ZHANG T,LI H,et al. Medical image fusion based on nuclear norm minimization[J]. International Journal of Imaging Systems and Technology,2015,25(4):310-316. [32] CAI J,CANDÈS E J,SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization,2010,20(4):1956-1982. [33] JOLLIFE I T. Principal Component Analysis[M]. New York:Springer,1986:135-137. [34] LU C, ZHU C, XU C, et al. Generalized singular value thresholding[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2015:1805-1811. [35] FROSIO I,KAUTZ J. Statistical nearest neighbors for image denoising[J]. IEEE Transactions on Image Processing,2018,28(2):723-738. [36] MA J,LIANG Z,FAN Y,et al. Variance analysis of X-ray CT sinograms in the presence of electronic noise background[J]. Medical Physics,2012,39(7 Pt 1):4051-4065. [37] ZHANG H,HAN H,LIANG Z,et al. Extracting information from previous full-dose CT scan for knowledge-based Bayesian reconstruction of current low-dose CT images[J]. IEEE Transactions on Medical Imaging,2016,35(3):860-870. [38] WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. |