[1] CANDÈS E J,LI X,MA Y,et al. Robust principal component analysis?[J]. Journal of the ACM,2011,58(3):No. 11. [2] ZHANG H,LIN Z,ZHANG C,et al. Exact recoverability of robust PCA via outlier pursuit with tight recovery bounds[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2015:3143-3149. [3] 侯旭珂, 杨宏伟, 马方, 等. 一种新的广义鲁棒主成分分析(GRPCA)算法研究及应用[J]. 北京化工大学学报(自然科学版),2018,45(4):82-85.(HONG X K,YANG H W,MA F,et al. Research and application of a new Generalized Robust Principal Component Analysis (GRPCA) algorithm[J]. Journal of Beijing University of Chemical Technology(Natural Science),2018,45(4):82-85.) [4] 王恒友, 余沾, 张长伦, 等. 基于低秩矩阵分解的批量扫描文档图像纠缠[J]. 计算机工程与应用,2018,54(17):175-179,207. (WANG H Y,YU Z,ZHANG C L,et al. Skew correction of batch scanned document images based on low-rank matrix decomposition[J]. Computer Engineering and Applications,2018,54(17):175-179,207.) [5] NGUYEN M H,TORRE F. Robust kernel principal component analysis[C]//Processing of the 21st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2008:1185-1192. [6] JI P,REID I,GARG R,et al. Adaptive low-rank kernel subspace clustering[EB/OL].[2019-06-25]. https://arxiv.org/pdf/1707.04974v4.pdf. [7] XIE X,GUO X,LIU G,et al. Implicit block diagonal low-rank representation[J]. IEEE Transactions on Image Processing,2018, 27(1):477-489. [8] XIE X,WU J,LIU G,et al. Matrix recovery with implicitly lowrank data[J]. Neurocomputing,2019,334:219-226. [9] WEI E,OZDAGLAR A. Distributed alternating direction method of multipliers[C]//Processing of the 51st IEEE Conference on Decision and Control. Piscataway:IEEE,2012:5445-5450. [10] BOYD S,PARIKH N,CHU E,et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011,3(1):1-122. [11] 李相俊, 盛兴, 闫士杰, 等. 基于交替方向乘子法的超大规模储能系统分布式协同优化[J]. 电网技术,2020,44(5):1681-1688. (LI X J, SHENG X, YAN S J, et al. Distributed collaborative optimization of ultra-large-scale energy storage system based on alternating direction multiplier method[J]. Power System Technology,2020,44(5):1681-1688.) [12] LIU G,ZHANG W. Recovery of future data via convolution nuclear norm minimization[EB/OL].[2020-02-13]. https://arxiv.org/pdf/1909.03889.pdf. [13] FAHMY M F,ABDEL RAHEEM G M,MOHAMED U S,et al. A new fast iterative blind deconvolution algorithm[J]. Journal of Signal and Information Processing,2012,3:98-108. [14] WANG C,HE Y,YANG H. Modelling the third kind boundary condition in scaled boundary finite element method based numerical analysis[J]. Engineering Analysis with Boundary Elements,2018,93:53-62. [15] CAI J,CANDÈS E J,SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization,2010,20(4):1956-1982. [16] LIN Z, CHEN M, WU L, et al. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL].[2020-10-18]. https:arxiv.org/pdf/1009.5055.pdf. |