[1] HART P. The condensed nearest neighbor rule (corresp.)[J]. IEEE Transactions on Information Theory,1968,14(3):515-516. [2] CARBONERA J L, ABEL M. A density-based approach for instance selection[C]//Proceedings of the IEEE 27th International Conference on Tools with Artificial Intelligence. Piscataway:IEEE,2015:768-774. [3] CARBONERA J L,ABEL M. A novel density-based approach for instance selection[C]//Proceedings of the IEEE 28th International Conference on Tools with Artificial Intelligence. Piscataway:IEEE,2016:549-556. [4] MALHAT M,EL MENSHAWY M,MOUSA H M,et al. A new approach for instance selection:Algorithms, evaluation, and comparisons[J]. Expert Systems with Applications,2020,149:No. 113297. [5] ARNAIZ-GONZÁLEZ Á,GONZÁLEZ-ROGEL A,DÍEZ-PASTOR J F,et al. MR-DIS:democratic instance selection for big data by MapReduce[J]. Progress in Artificial Intelligence,2017,6(3):211-219. [6] DE HARO-GARCÍA A, PÉREZ-RODRÍGUEZ J, GARCÍAPEDRAJAS N. Combining three strategies for evolutionary instance selection for instance-based learning[J]. Swarm and Evolutionary Computation,2018,42:160-172. [7] GUO L,BOUKIR S,AUSSEM A. Building bagging on critical instances[J]. Expert Systems,2020,37(2):No. e12486. [8] KORDOS M, ŁAPA K. Multi-objective evolutionary instance selection for regression tasks[J]. Entropy, 2018, 20(10):No. 746. [9] GATES G. The reduced nearest neighbor rule (corresp.)[J]. IEEE Transactions on Information Theory,1972,18(3):431-433. [10] RITTER G L,WOODRUFF H,LOWRY S,et al. An algorithm for a selective nearest neighbor decision rule(corresp.)[J]. IEEE Transactions on Information Theory,1975,21(6):665-669. [11] LIAO Y,PAN X. A new method of training sample selection in text classification[C]//Proceedings of the 2nd International Workshop on Education Technology and Computer Science. Piscataway:IEEE,2010:211-214. [12] ZHAI J,WANG X,PANG X. Voting-based instance selection from large data sets with MapReduce and random weight networks[J]. Information Sciences,2016,367/368:1066-1077. [13] ABBASI Z,RAHMANI M. An instance selection algorithm based on ReliefF[J]. International Journal on Artificial Intelligence Tools,2019,28(1):No. 1950001. [14] CAVALCANTI G D C,SOARES R J O. Ranking-based instance selection for pattern classification[J]. Expert Systems with Applications,2020,150:No. 113269. [15] YANG Y,CHEN D,WANG H. Active sample selection based incremental algorithm for attribute reduction with rough sets[J]. IEEE Transactions on Fuzzy Systems,2017,25(4):825-838. [16] PANG X,XU C,XU Y. Scaling KNN multi-class twin support vector machine via safe instance reduction[J]. Knowledge Based Systems,2018,148:17-30. [17] JIANG Z,ZHU X,TAN W,et al. Training sample selection for deep learning of distributed data[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway:IEEE,2017:2189-2193. [18] KUFRIN R. Decision trees on parallel processors[J]. Machine Intelligence and Pattern Recognition,1997,20:279-306. [19] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. [20] YILDIZ O T,DIKMEN O. Parallel univariate decision trees[J]. Pattern Recognition Letters,2007,28(7):825-832. [21] WU G, LI H, HU X, et al. MReC4.5:C4.5 ensemble classification with MapReduce[C]//Proceedings of the 4th ChinaGrid Annual Conference. Piscataway:IEEE, 2009:249-255. [22] ROBNIK-SIKONJA M. Improving random forests[C]//Proceedings of the 2004 European Conference on Machine Learning,LNCS 3201. Berlin:Springer,2004:359-370. [23] DEL RÍO S,LÓPEZ V,BENÍTEZ J M,et al. On the use of MapReduce for imbalanced big data using random forest[J]. Information Sciences,2014,285:112-137. [24] XU Y. Research and implementation of improved random forest algorithm based on Spark[C]//Proceedings of the IEEE 2nd International Conference on Big Data. Piscataway:IEEE,2017:499-503. [25] 董西成. Hadoop技术内幕:深入解析MapReduce架构设计与实现原理[M]. 北京:机械工业出版社,2013:40-71.(DONG X C. Hadoop Internals:In-Depth Study of MapReduce[M]. Beijing:China Machine Press,2013:40-71.) [26] 耿嘉安. 深入理解Spark:核心思想与源码分析[M]. 北京:机械工业出版社,2016:139-178.(GENG J A. Spark Internals:Core Design and Source Code Analysis[M]. Beijing:China Machine Press,2016:139-178.) |