1 史明霞,张旭,张涛.肺部图像配准关键技术及研究现状[J].北京生物医学工程,2017,36(4):427-432. SHIM X, ZHANGX, ZHANGT. Key technology and research status of registration methods for pulmonary image [J]. Beijing Biomedical Engineering, 2017, 36(4): 427-432. 2 王海南,郝重阳,雷方元,等.非刚性医学图像配准研究综述[J].计算机工程与应用,2005,41(11):180-184. WANGH N, HAOC Y, LEIF Y, et al. A survey of non-rigid medical image registration [J]. Computer Engineering and Applications, 2005, 41(11): 180-184. 3 许鸿奎,江铭炎,杨明强.基于改进光流场模型的脑部多模医学图像配准[J].电子学报,2012,40(3):525-529. XUH K, JIANGM Y, YANGM Q. Registration of multimodal brain medical images based on improved optical flow model [J]. Acta Electronica Sinica, 2012, 40(3): 525-529. 4 纪慧中,贾大宇,董恩清,等.基于图像特征和光流场的非刚性图像配准[J].光学精密工程,2017,25(9): 2469-2482. JIH Z, JIAD Y, DONGE Q, et al. Non-rigid registrations based on image characteristics and optical flows [J]. Optics and Precision Engineering, 2017, 25(9): 2469-2482. 5 王昌,任琼琼,秦鑫,等.基于自适应微分同胚多分辨率 Demons 算法的多模态磁共振图像配准[J].中国生物医学工程学报,2018,37(2):155-162. WANGC, RENQ Q, QINX, et al. Multi-modal MRI image registration based on adaptive diffeomorphic multi-resolution Demons algorithm [J]. Chinese Journal of Biomedical Engineering, 2018, 37(2): 155-162. 6 THIRIONJ P. Image matching as a diffusion process: an analogy with Maxwell’s demons [J]. Medical Image Analysis, 1998, 2(3): 243-260. 7 LIUC, YUENJ, TORRALBAA, et al. SIFT flow: dense correspondence across different scenes [C]// Proceedings of the 2008 European Conference on Computer Vision, LNCS 5304. Berlin: Springer, 2008: 28-42. 8 LIUC, YUENJ, TORRALBAA. SIFT flow: dense correspondence across scenes and its applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(5): 978-994. 9 CHOPRAS, HADSELLR, LECUNY. Learning a similarity metric discriminatively, with application to face verification [C]// Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 539-546. 10 KLEINS, STARINGM, MURPHYK, et al. Elastix: a toolbox for intensity-based medical image registration [J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 196-205. 11 JIAY, SHELHAMERE, DONAHUEJ, et al. Caffe: convolutional architecture for fast feature embedding [C]// Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 675-678. 12 SIMONYANK, ZISSERMANA. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2019-01-20].https://arxiv.org/pdf/1409.1556.pdf. 13 SHEKHOVTSOVA, KOVTUNI, HLAVáČV. Efficient MRF deformation model for non-rigid image matching [J]. Computer Vision and Image Understanding, 2008, 112(1): 91-99. 14 HUY, SONGR, LIY. Efficient coarse-to-fine patch match for large displacement optical flow [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5704-5712. 15 HOUH, ANDREWSH. Cubic splines for image interpolation and digital filtering [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508-517. 16 MURPHYK, GINNEKEN BVAN, REINHARDTJ M, et al. Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge [J]. IEEE Transactions on Medical Imaging, 2011, 30(11): 1901-1920. 17 BERNARDO, LALANDEA, ZOTTIC, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? [J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525. 18 RIKXOORT E MVAN, DE HOOPB, VIERGEVERM A, et al. Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection [J]. Medical Physics, 2009, 36(7): 2934-2947. 19 SIMARDP Y, STEINKRAUSD, PLATTJ C. Best practices for convolutional neural networks applied to visual document analysis [C]// Proceedings of the Seventh International Conference on document Analysis and Recognition. Washington, DC: IEEE Computer Society, 2003: 958-963. 20 LOWEKAMPB C, CHEND T, IBáÑEZL, et al. The design of SimpleITK[J]. Frontiers in Neuroinformatics, 2013, 7: No.45. 21 TUSTISONN, GEE J. Introducing Dice, Jaccard, and other label overlap measures to ITK[J]. Insight Journal, 2009, 2: Article No.707. |