[1] 陈森发,张文红,张建坤,等. 短期降雨预测的随机微分模型[J]. 系统工程学报, 2004, 19(3):239-243.(CHEN S F, ZHANG W H, ZHANG J K, et al. Short-term rainfall prediction of stochastic differential models[J]. Journal of Systems Engineering, 2004, 19(3):239-243.) [2] 赵欣,邹良超,倪林. 基于有序聚类的模糊加权马尔可夫模型在降雨预测中的应用[J]. 江西农业学报, 2009, 21(2):110-113. (ZHAO X, ZOU L C, NI L. Application of fuzzy weighted Markov model based on ordered clustering to rainfall prediction[J]. Acta Agriculture Jiangxi, 2009, 21(2):110-113.) [3] 朱平,李生辰,肖建设,等. 天气雷达回波外推技术应用研究[J]. 气象, 2008, 34(7):3-9.(ZHU P, LI S C, XIAO J S,et al. Study on extrapolation technique of weather radar echo and its application to nowcasting[J]. Meteorological Monthly, 2008, 34(7):3-9.) [4] 卢乃锰,方翔,刘健,等. 气象卫星的云观测[J]. 气象, 2017, 43(3):257-267.(LU N M, FANG X, LIU J, et al. Understanding clouds by meteorological satellites[J]. Meteorological Monthly, 2017, 43(3):257-267.) [5] 李森,刘健文,刘玉玲. 基于FY2D静止卫星云图的强对流云团识别[J]. 气象水文海洋仪器, 2010, 27(2):72-78.(LI S, LIU J W, LIU Y L. Detection of strong convective clouds based on FY2D geostationary satellite[J]. Meteorological, Hydrological and Marine Instruments, 2010, 27(2):72-78.) [6] 赵文化,单海滨. 基于红外窗区与水汽通道对流云团识别方法研究[J]. 气象, 2018, 44(6):814-824.(ZHAO W H, SHAN H B. Study of convective cloud identification based on H2O/IRW observation[J]. Meteorological Monthly, 2018, 44(6):814-824.) [7] 周晓丽,杨昌军. 基于FY-2D的新疆区域强对流云识别[J]. 沙漠与绿洲气象, 2017, 11(2):82-87.(ZHOU X L, YANG C J. Identification of strong convective cloud in Xinjiang using FY-2D stationary meteorological satellite data[J]. Desert and Oasis Meteorology, 2017, 11(2):82-87.) [8] 吴晓京,朱小祥,毛紫阳,等. 风云二号气象卫星红外观测在云团降水监测中的应用[J]. 海洋气象学报, 2019, 39(3):1-10.(WU X J, ZHU X X, MAO Z Y, et al. Algorithm design of convective precipitation monitoring and early warning service using FY-2 infrared data[J]. Journal of Marine Meteorology, 2019, 39(3):1-10.) [9] WOLF D E, HALL D J, ENDLICH R M. Experiments in automatic cloud tracking using SMS-GOES data[J]. Journal of Applied Meteorology, 1977, 16(11):1219-1230. [10] MAHOVIĆ N S, ZEINER B. Application of meteosat SEVIRI channel difference 0.6μm-1.6μm in convective cells detection[J]. Atmospheric Research, 2009, 93(1/2/3):270-276. [11] 许玥,冯梦如,皮家甜,等. 基于深度学习模型的遥感图像分割方法[J]. 计算机应用, 2019, 39(10):2905-2914.(XU Y, FENG M R, PI J T, et al. Remote sensing image segmentation method based on deep learning model[J]. Journal of Computer Applications, 2019, 39(10):2905-2914.) [12] 周明非,汪西莉. 结合纹理去除的遥感图像分割[J]. 计算机应用, 2017, 37(11):3162-3167.(ZHOU M F, WANG X L. Remote sensing image segmentation with texture removal[J]. Journal of Computer Applications, 2017, 37(11):3162-3167.) [13] 夏勇,赵荣椿. 基于形态学多重分形的遥感图像多尺度分割[J]. 计算机应用, 2006, 26(9):2071-2073.(XIA Y, ZHAO R C. Multiscale segmentation of remote sensing images based on multifractal exponents[J]. Journal of Computer Applications, 2006, 26(9):2071-2073.) [14] 陈天华,郑司群,于峻川. 采用改进DeepLab网络的遥感图像分割[J]. 测控技术, 2018, 37(11):34-39.(CHEN T H, ZHENG S Q, YU J C. Remote sensing image segmentation based on improved DeepLab network[J]. Measurement and Control Technology, 2018, 37(11):34-39.) [15] 宋小娜,芮挺,王新晴. 结合语义边界信息的道路环境语义分割方法[J]. 计算机应用, 2019, 39(9):2505-2510.(SONG X N, RUI T, WANG X Q. Semantic segmentation method of road environment combined semantic boundary information[J]. Journal of Computer Applications, 2019, 39(9):2505-2510.) [16] 吴宗胜,傅卫平,韩改宁. 基于深度卷积神经网络的道路场景理解[J]. 计算机工程与应用, 2017, 53(22):8-15.(WU Z S, FU W P, HAN G N. Road scene understanding based on deep convolutional neural network[J]. Computer Engineering and Applications, 2017, 53(22):8-15.) [17] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2018:1451-1460. [18] 郑菲,孟朝晖,郭闯世. 基于反卷积特征学习的图像语义分割算法[J]. 计算机系统应用, 2019, 28(1):149-157.(ZHENG F, MENG Z H, GUO C S. Image semantic segmentation algorithm based on deconvolution feature learning[J]. Computer System and Applications, 2019, 28(1):149-157.) |