[1] SZILÁGYI L,LEFKOVITS L,BENYÓ B. Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy c-means cascade algorithm[C]//Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway:IEEE,2015:285-291. [2] MIRAJKAR G, BARBADEKAR B. Automatic segmentation of brain tumors from MR images using undecimated wavelet transform and Gabor wavelets[C]//Proceedings of the 17th IEEE International Conference on Electronics, Circuits and Systems. Piscataway:IEEE,2010:702-705. [3] KAYA I E,PEHLIVANLI A Ç,SEKIZKARDEŞ E G,et al. PCA based clustering for brain tumor segmentation of T1w MRI images[J]. Computer Methods and Programs in Biomedicine,2017,140:19-28. [4] HSIEH T M,LIU Y M,LIAO C C,et al. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing[J]. BMC Medical Informatics and Decision Making,2011,11(1):No. 54. [5] MENZE B H,VAN LEEMPUT K,LASHKARI D,et al. A generative model for brain tumor segmentation in multi-modal images[C]//Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 6362. Berlin:Springer,2010:151-159. [6] BAUER S,NOLTE L P,REYES M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization[C]//Proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 6893. Berlin:Springer,2011:354-361. [7] MEIER R,BAUER S,SLOTBOOM J,et al. A hybrid model for multimodal brain tumor segmentation[C]//Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS)2013. Nagoya:MICCAI Society,2013:31-37. [8] MEIER R,BAUER S,SLOTBOOM J,et al. Appearance-and context-sensitive features for brain tumor segmentation[C]//Proceedings of MICCAI BRATS Challenge. Nagoya:MICCAI Society, 2014:20-26. [9] PINTO A,PEREIRA S,CORREIA H,et al. Brain tumour segmentation based on extremely randomized forest with high-level features[C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway:IEEE,2015:3037-3040. [10] TUSTISON N J,SHRINIDHI K L,WINTERMARK M,et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation(simplified)with ANTsR[J]. Neuroinformatics,2015,13(2):209-225. [11] SOLTANINEJAD M,YANG G,LAMBROU T,et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI[J]. International Journal of Computer Assisted Radiology and Surgery,2017,12(2):183-203. [12] PEREIRA S,PINTO A,ALVES V,et al. Brain tumor segmentation using convolutional neural networks in MRI images[J]. IEEE Transactions on Medical Imaging,2016,35(5):1240-1251. [13] HAVAEI M,DAVY A,WARDE-FARLEY D,et al. Brain tumor segmentation with deep neural networks[J]. Medical Image Analysis,2017,35:18-31. [14] HUSSAIN S,ANWAR S M,MAJID M. Segmentation of glioma tumors in brain using deep convolutional neural network[J]. Neurocomputing,2018,282:248-261. [15] 朱婷, 王瑜, 肖洪兵, 等. 基于多通路CNN的多模态MRI神经胶质瘤分割[J]. 计算机应用与软件,2018,35(4):220-226. (ZHU T,WANG Y,XIAO H B,et al. Multi-modality MRI gliomas segmentation based on multi-channel CNN[J]. Computer Applications and Software,2018,35(4):220-226.) [16] 赖小波, 许茂盛, 徐小媚. 多分类CNN的胶质母细胞瘤多模态MR图像分割[J]. 电子学报,2019,47(8):1738-1747.(LAI X B,XU M S,XU X M. Glioblastoma multiforme multi-modal MR images segmentation using multi-class CNN[J]. Acta Electronica Sinica,2019,47(8):1738-1747.) [17] RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 9351. Cham:Springer,2015:234-241. [18] ZHAO X,WU Y,SONG G,et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Medical Image Analysis,2018,43:98-111. [19] 朱婷, 王瑜, 肖洪兵, 等. 基于WRN-PPNet的多模态MRI脑肿瘤全自动分割[J]. 计算机工程,2018,44(12):258-263,270. (ZHU T,WANG Y,XIAO H B,et al. Automatic segmentation of multimodal MRI brain tumors based on WRN-PPNet[J]. Computer Engineering,2018,44(12):258-263,270.) [20] MOK T C W,CHUNG A C S. Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks[C]//Proceedings of the 4th International MICCAI Brainlesion Workshop,LNCS 11383. Cham:Springer,2018:70-80. [21] XUE Y,XU T,ZHANG H,et al. SegAN:adversarial network with multi-scale L1 loss for medical image segmentation[J]. Neuroinformatics,2018,16(3/4):383-392. [22] KAMNITSAS K,LEDIG C,NEWCOMBE V F J,et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Medical Image Analysis,2017,36:61-78. [23] ISENSEE F,KICKINGEREDER P,WICK W,et al. Brain tumor segmentation and radiomics survival prediction:contribution to the BRATS 2017 challenge[C]//Proceedings of the 3rd International MICCAI Brainlesion Workshop,LNCS 10670. Cham:Springer, 2018:287-297. [24] 唐诗, 王福龙. 结合CRF的DCNN脑肿瘤MRI分割方法[J]. 现代计算机(专业版),2018(20):42-44,49.(TANG S,WANG F L. DCNN brain tumor segmentation method combined with CRF[J]. Modern Computer,2018(20):42-44,49.) [25] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-11-12]. https://arxiv.org/pdf/1502.03167.pdf. [26] KINGMA D P,BA J L. Adam:a method for stochastic optimization[EB/OL].[2019-11-12]. https://arxiv.org/pdf/1412.6980.pdf. |