[1] LIU G, ZOHG X. Research of second-hand real estate price forecasting based on data mining[C]//Proceedings of the IEEE 2nd Information Technology,Networking,Electronic and Automation Control Conference. Piscataway:IEEE,2017:1675-1679. [2] PHAN T D. Housing price prediction using machine learning algorithms:the case of Melbourne city,Australia[C]//Proceedings of the 2018 International Conference on Machine Learning and Data Engineering. Piscataway:IEEE,2018:35-42. [3] FENG Y,JONES K. Comparing multilevel modelling and artificial neural networks in house price prediction[C]//Proceedings of the 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services. Piscataway:IEEE, 2015:108-114. [4] MUKHLISHIN M F,SAPUTRA R,WIBOWO A. Predicting house sale price using fuzzy logic,artificial neural network and k-nearest neighbor[C]//Proceedings of the 1st International Conference on Informatics and Computational Sciences. Piscataway:IEEE,2017:171-176. [5] LU S,LI Z,QIN ZHEN,et al. A hybrid regression technique for house price prediction[C]//Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway:IEEE,2017:319-323. [6] 王昕睿. 基于机器学习的房产智能自动评估模型的研究与系统实现[D]. 北京:北京邮电大学,2019:37.(WANG X R. Research and system implementation of intelligent automatic evaluation model for real estate based on machine learning[D]. Beijing:Beijing University of Posts and Telecommunications, 2019:37.) [7] 刘燕云. 基于兰州市二手房价评估模型研究[D]. 兰州:兰州大学,2019:37.(LIU Y Y. Research on Lanzhou second-hand house price evaluation model[D]. Lanzhou:Lanzhou University, 2019:37.) [8] 陈敏, 李英冰. 基于特征价格理论和神经网络的武汉二手房价自动评估[J]. 城市勘测,2018(4):21-24.(CHEN M,LI Y B. Automatic evaluation of second-hand house prices in Wuhan based on hedonic price theory and neural network[J]. Urban Geotechnical Investigation and Surveying,2018(4):21-24.) [9] 王海泉. 武汉市二手房价格评估研究[D]. 武汉:华中师范大学,2018:35-49.(WANG H Q. Study on the price evaluation of second-hand houses in Wuhan[D]. Wuhan:Central China Normal University,2018:35-49.) [10] 李恒凯, 柯江晨, 王秀丽. 融GIS和BP神经网络的住宅房产评估模型[J]. 测绘科学,2018,43(8):104-109.(LI H K,KE J C,WANG X L. Evaluation model of residential property based on GIS and BP neural network model method[J]. Science of Surveying and Mapping,2018,43(8):104-109.) [11] 张良均, 王路, 谭立云, 等. Python数据分析与挖掘实战[M]. 北京:机械工业出版社,2016:48(ZHANG L J,WANG L,TAN L Y,et al. Python Practice of Data Analysis and Mining[M]. Beijing:China Machine Press,2016:48.) [12] DIETTERICH T G. Machine learning research:four current directions[J]. AI Magazine,1997,18(4):97-136. [13] 周志华. 机器学习[M]. 北京:清华大学出版社,2016:171-173. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press,2016:171-173.) [14] 周钢, 郭福亮. 集成学习方法研究[J]. 计算机技术与自动化, 2018,37(4):148-153. (ZHOU G,GUO F L. Research on ensemble learning[J]. Computing Technology and Automation, 2018,37(4):148-153.) [15] BREIMAN L. Bagging predicators[J]. Machine Learning,1996, 24(2):123-140. [16] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. [17] 方匡南, 吴久彬, 宋建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32-38.(FANG K N,WU J B,SONG J P, et al. A review of random forests[J]. Statistics and Information Forum,2011,26(3):32-38.) [18] GUO L,QI M,FINLEY T,et al. LightGBM:a highly efficient gradient boosting decision tree[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2017:3146-3154. [19] SHAHRIARI B,SWERSKY K,WANG Z,et al. Taking the human out of the loop:a review of Bayesian optimization[J]. Proceedings of the IEEE,2015,104(1):148-175. [20] RASMUSSEN C E,WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge:MIT Press,2005:13-16. [21] SNOEK J,LAROCHELLE H,ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2012:2951-2959. |