[1] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:171-173. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016:171-173.) [2] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. [3] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:568-576. [4] WANG L, XIONG Y, WANG Z, et al. Temporal segment networks:towards good practices for deep action recognition[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham:Springer, 2016:22-36. [5] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [6] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [7] LIU W, WEN Y, YU Z, et al. SphereFace:deep hypersphere embedding for face recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6738-6746. [8] SOOMRO K, ZAMIR A R, SHAH M. UCF101:a dataset of 101 human actions classes from videos in the wild[EB/OL].[2019-12-12].https://arxiv.org/pdf/1212.0402.pdf. [9] ZHU Y, LAN Z, NEWSAM S, et al. Hidden two-stream convolutional networks for action recognition[C]//Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham:Springer, 2018:363-378. [10] ZACH C, POCK T, BISCHOF H. A duality based approach for realtime TV-L1 optical flow[C]//Proceedings of the 2007 Joint Pattern Recognition Symposium, LNCS 4713. Berlin:Springer, 2007:214-223. [11] NG J Y H, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets:deep networks for video classification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:4694-4702. [12] YANG H, YUAN C, LI B, et al. Asymmetric 3D convolutional neural networks for action recognition[J]. Pattern Recognition, 2019, 85:1-12. [13] LUVIZON D C, PICARD D, TABIA H, et al. 2D/3D pose estimation and action recognition using multitask deep learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:5137-5146 [14] 王萍,庞文浩. 基于视频分段的空时双通道卷积神经网络的行为识别[J]. 计算机应用, 2019, 39(7):2081-2086. (WANG P, PANG W H. Two-stream CNN for action recognition based on video segmentation[J]. Journal of Computer Applications, 2019, 39(7):2081-2086.) [15] 刘天亮,谯庆伟,万俊伟,等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10):2395-2401. (LIU T L, QIAO Q W, WAN J W, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics and Information Technology, 2018, 40(10):2395-2401.) [16] 杨天明,陈志,岳文静. 基于视频深度学习的时空双流人物动作识别模型[J]. 计算机应用, 2018, 38(3):895-899, 915. (YANG T M, CHEN Z, YUE W J. Spatio-temporal two-stream human action recognition model based on video deep learning[J]. Journal of Computer Applications, 2018, 38(3):895-899, 915.) |