[1] GILBERT J M,HILLS S,RIFE M L. Substance abuse treatment:group therapy. Treatment Improvement Protocol (TIP) Series 41[J]. Substance Abuse and Mental Health Services Administration, 2005,190(4):80-80. [2] SHEN C Y,HUANG L H,YANG D N,et al. On finding socially tenuous groups for online social networks[C]//Proceedings of the 23rd ACM SIGKDD Conference on Knowledge and Data Mining. New York:ACM,2017:415-424. [3] HSU B Y,LAN Y F,SHEN C Y. On automatic formation of Effective therapy groups in social networks[J]. IEEE Transactions on Computational Social Systems,2018,5(3):713-726. [4] LI W. Finding tenuous groups in social networks[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. Piscataway:IEEE,2018:284-291. [5] 齐金山, 梁循, 李志宇, 等. 大规模复杂信息网络表示学习:概念、方法与挑战[J]. 计算机学报,2018,41(10):2394-2420.(QI J S,LIANG X,LI Z Y,et al. Representation learning of large-scale complex information network:concepts,methods and challenges[J]. Chinese Journal of Computers,2018,41(10):2394-2420.) [6] 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学:信息科学,2017,47(8):980-996.(TU C C,YANG C,LIU Z Y,et al. Network representation learning:an overview[J]. SCIENTIA SINICA Informationis,2017,47(8):980-996.) [7] CAI H,ZHENG V W,CHANG K C C. A comprehensive survey of graph embedding:problems, techniques and applications[J]. IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616-1637. [8] PEROZZI B,AI-RFOU R,SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:701-710. [9] GROVER A,LESKOVEC J. Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:855-864. [10] TANG J,QU M,WANG M,et al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva, CHE:International World Wide Web Conferences Steering Committee,2015:1067-1077. [11] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C]//Proceeding of the 24th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2015:2111-2117. [12] WANG D,CUI P,ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:1225-1234. [13] CAO S,LU W,XU Q. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1145-1152. [14] BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics,1988,59(4/5):291-294. [15] LAI S,LIU K,HE S,et al. How to generate a good word embedding[J]. IEEE Intelligent Systems,2016,31(6):5-14. [16] LANCICHINETTI A, FORTUNATO S, RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E,Statistical, Nonlinear, and Soft Matter Physics,2008,78(4 Pt 2):No. 046110. |