《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2643-2651.DOI: 10.11772/j.issn.1001-9081.2021071354
所属专题: 人工智能
• 人工智能 • 下一篇
收稿日期:
2021-07-28
修回日期:
2021-10-18
接受日期:
2021-10-21
发布日期:
2021-11-10
出版日期:
2022-09-10
通讯作者:
王文剑
作者简介:
杜航原(1985—),男,山西太原人,副教授,博士,CCF会员,主要研究方向:聚类分析、复杂网络;基金资助:
Hangyuan DU1, Sicong HAO1, Wenjian WANG1,2()
Received:
2021-07-28
Revised:
2021-10-18
Accepted:
2021-10-21
Online:
2021-11-10
Published:
2022-09-10
Contact:
Wenjian WANG
About author:
DU Hangyuan, born in 1985, Ph. D., associate professor. His research interests include cluster analysis, complex network.Supported by:
摘要:
节点标签是复杂网络中广泛存在的监督信息,对网络表示学习具有重要作用。基于此,提出了一种结合图自编码器与聚类的半监督表示学习方法(GAECSRL)。首先,以图卷积网络(GCN)和内积函数分别作为编码器和解码器,并构建图自编码器以形成信息传播框架;然后,在编码器生成的低维表示基础上增加k-means聚类模块,从而使图自编码器的训练过程和节点的类别分布划分形成自监督机制;最后,利用节点标签的判别信息对网络低维表示的类别划分进行指导,将网络表示生成、类别划分以及图自编码器的训练构建在一个统一的优化模型中,并获得融合节点标签信息的有效网络表示结果。在仿真实验中,将GAECSRL用于节点分类和链接预测任务。实验结果表明,相比DeepWalk、node2vec、全局结构信息图表示学习(GraRep)、结构化深度网络嵌入(SDNE)和用数据的转导式或归纳式嵌入预测标签和邻居(Planetoid),在节点分类任务中GAECSRL的Micro?F1指标提高了0.9~24.46个百分点,Macro?F1指标提高了0.76~24.20个百分点;在链接预测任务中,GAECSRL的AUC指标提高了0.33~9.06个百分点,说明GAECSRL获得的网络表示结果能有效提高节点分类和链接预测任务的性能。
中图分类号:
杜航原, 郝思聪, 王文剑. 结合图自编码器与聚类的半监督表示学习方法[J]. 计算机应用, 2022, 42(9): 2643-2651.
Hangyuan DU, Sicong HAO, Wenjian WANG. Semi-supervised representation learning method combining graph auto-encoder and clustering[J]. Journal of Computer Applications, 2022, 42(9): 2643-2651.
数据集 | 类别数 | 节点数 | 边数 | 特征维度 |
---|---|---|---|---|
Cora | 7 | 2 708 | 5 429 | 1 433 |
CiteSeer | 6 | 3 312 | 4 732 | 3 703 |
PubMed | 3 | 19 717 | 44 338 | 500 |
Wiki | 19 | 2 405 | 17 981 | 4 973 |
表1 数据集的统计信息
Tab.1 Statistics of datasets
数据集 | 类别数 | 节点数 | 边数 | 特征维度 |
---|---|---|---|---|
Cora | 7 | 2 708 | 5 429 | 1 433 |
CiteSeer | 6 | 3 312 | 4 732 | 3 703 |
PubMed | 3 | 19 717 | 44 338 | 500 |
Wiki | 19 | 2 405 | 17 981 | 4 973 |
实际结果 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | 真正例(TP) | 假反例(FN) |
反例 | 假正例(FP) | 真反例(TN) |
表2 混淆矩阵
Tab.2 Confusion matrix
实际结果 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | 真正例(TP) | 假反例(FN) |
反例 | 假正例(FP) | 真反例(TN) |
数据集 | 方法 | 标记率 | 平均Micro⁃F1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.85 | 84.63 | 83.22 | 82.32 | 82.17 | 81.94 | 81.29 | 80.87 | 77.74 | 82.11 |
DeepWalk | 83.55 | 83.01 | 82.97 | 82.72 | 82.53 | 81.52 | 80.26 | 78.61 | 75.75 | 81.21 | |
node2vec | 82.84 | 82.42 | 82.08 | 81.90 | 81.85 | 81.55 | 80.42 | 79.07 | 75.83 | 80.88 | |
GraRep | 81.92 | 80.15 | 79.46 | 79.40 | 79.39 | 79.14 | 79.06 | 78.45 | 74.16 | 79.01 | |
SDNE | 79.23 | 78.64 | 78.16 | 77.12 | 76.56 | 76.29 | 75.25 | 73.36 | 69.77 | 76.04 | |
Planetoid | 75.89 | 74.72 | 73.29 | 72.67 | 71.59 | 70.54 | 68.19 | 66.24 | 63.57 | 70.74 | |
CiteSeer | GAECSRL | 75.19 | 74.72 | 73.25 | 72.83 | 72.31 | 71.53 | 71.27 | 70.49 | 68.01 | 72.18 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 65.52 | 65.59 | 64.55 | 64.48 | 63.64 | 62.76 | 61.15 | 59.66 | 57.40 | 62.75 | |
Wiki | GAECSRL | 78.21 | 76.32 | 75.24 | 74.45 | 74.23 | 73.69 | 71.58 | 70.14 | 68.17 | 73.56 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 74.23 | 74.37 | 73.25 | 72.55 | 71.69 | 70.36 | 70.24 | 69.57 | 67.10 | 71.48 | |
PubMed | GAECSRL | 82.34 | 81.53 | 80.97 | 80.17 | 79.21 | 78.85 | 78.34 | 75.29 | 74.91 | 79.07 |
DeepWalk | 80.48 | 79.74 | 78.97 | 77.39 | 76.23 | 75.20 | 74.94 | 73.86 | 71.02 | 76.43 | |
node2vec | 81.61 | 80.01 | 79.87 | 79.31 | 78.47 | 77.28 | 76.83 | 75.67 | 74.09 | 78.13 | |
GraRep | 80.14 | 79.58 | 78.23 | 77.67 | 76.32 | 75.90 | 74.77 | 73.52 | 72.27 | 76.49 | |
SDNE | 72.93 | 72.23 | 71.18 | 70.06 | 69.96 | 69.15 | 68.61 | 67.48 | 66.09 | 69.74 | |
Planetoid | 77.54 | 77.13 | 76.27 | 75.92 | 74.90 | 73.45 | 72.30 | 71.81 | 70.98 | 74.48 |
表3 不同数据集上节点分类的Micro?F1值 (%)
Tab.3 Micro?F1 values of node classification on different datasets
数据集 | 方法 | 标记率 | 平均Micro⁃F1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.85 | 84.63 | 83.22 | 82.32 | 82.17 | 81.94 | 81.29 | 80.87 | 77.74 | 82.11 |
DeepWalk | 83.55 | 83.01 | 82.97 | 82.72 | 82.53 | 81.52 | 80.26 | 78.61 | 75.75 | 81.21 | |
node2vec | 82.84 | 82.42 | 82.08 | 81.90 | 81.85 | 81.55 | 80.42 | 79.07 | 75.83 | 80.88 | |
GraRep | 81.92 | 80.15 | 79.46 | 79.40 | 79.39 | 79.14 | 79.06 | 78.45 | 74.16 | 79.01 | |
SDNE | 79.23 | 78.64 | 78.16 | 77.12 | 76.56 | 76.29 | 75.25 | 73.36 | 69.77 | 76.04 | |
Planetoid | 75.89 | 74.72 | 73.29 | 72.67 | 71.59 | 70.54 | 68.19 | 66.24 | 63.57 | 70.74 | |
CiteSeer | GAECSRL | 75.19 | 74.72 | 73.25 | 72.83 | 72.31 | 71.53 | 71.27 | 70.49 | 68.01 | 72.18 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 65.52 | 65.59 | 64.55 | 64.48 | 63.64 | 62.76 | 61.15 | 59.66 | 57.40 | 62.75 | |
Wiki | GAECSRL | 78.21 | 76.32 | 75.24 | 74.45 | 74.23 | 73.69 | 71.58 | 70.14 | 68.17 | 73.56 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 74.23 | 74.37 | 73.25 | 72.55 | 71.69 | 70.36 | 70.24 | 69.57 | 67.10 | 71.48 | |
PubMed | GAECSRL | 82.34 | 81.53 | 80.97 | 80.17 | 79.21 | 78.85 | 78.34 | 75.29 | 74.91 | 79.07 |
DeepWalk | 80.48 | 79.74 | 78.97 | 77.39 | 76.23 | 75.20 | 74.94 | 73.86 | 71.02 | 76.43 | |
node2vec | 81.61 | 80.01 | 79.87 | 79.31 | 78.47 | 77.28 | 76.83 | 75.67 | 74.09 | 78.13 | |
GraRep | 80.14 | 79.58 | 78.23 | 77.67 | 76.32 | 75.90 | 74.77 | 73.52 | 72.27 | 76.49 | |
SDNE | 72.93 | 72.23 | 71.18 | 70.06 | 69.96 | 69.15 | 68.61 | 67.48 | 66.09 | 69.74 | |
Planetoid | 77.54 | 77.13 | 76.27 | 75.92 | 74.90 | 73.45 | 72.30 | 71.81 | 70.98 | 74.48 |
数据集 | 方法 | 标记率 | 平均Macro-F1/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.14 | 83.62 | 82.69 | 82.47 | 81.35 | 81.04 | 80.13 | 79.23 | 75.33 | 81.11 |
DeepWalk | 82.41 | 82.35 | 82.30 | 82.04 | 81.94 | 80.67 | 79.34 | 77.57 | 74.55 | 80.35 | |
node2vec | 81.79 | 81.59 | 81.49 | 81.45 | 81.35 | 81.11 | 79.90 | 78.58 | 74.58 | 80.20 | |
GraRep | 79.75 | 79.42 | 79.29 | 79.14 | 79.07 | 78.57 | 78.48 | 77.94 | 73.12 | 78.31 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
CiteSeer | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
node2vec | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
GraRep | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 71.35 | 71.01 | 70.43 | 69.35 | 68.19 | 67.85 | 66.78 | 65.62 | 58.74 | 67.70 | |
Wiki | GAECSRL | 81.28 | 81.01 | 80.58 | 79.55 | 78.43 | 77.76 | 77.88 | 77.50 | 76.67 | 78.96 |
DeepWalk | 79.29 | 78.66 | 77.92 | 77.49 | 77.24 | 76.88 | 75.58 | 75.46 | 74.50 | 77.00 | |
node2vec | 79.92 | 79.59 | 79.36 | 78.62 | 77.89 | 77.02 | 76.37 | 76.26 | 75.70 | 77.86 | |
GraRep | 78.09 | 77.28 | 77.06 | 76.78 | 76.37 | 76.29 | 75.31 | 75.1 | 74.52 | 76.31 | |
SDNE | 70.66 | 69.57 | 69.35 | 69.21 | 68.82 | 68.24 | 67.81 | 67.33 | 67.14 | 68.68 | |
Planetoid | 76.56 | 76.17 | 75.83 | 75.54 | 74.57 | 73.53 | 72.00 | 71.51 | 70.65 | 74.04 | |
PubMed | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
node2vec | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
GraRep | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
SDNE | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
Planetoid | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 |
表4 不同数据集上节点分类的Macro?F1值 (%)
Tab. 4 Macro?F1 values of node classification on different datasets
数据集 | 方法 | 标记率 | 平均Macro-F1/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.14 | 83.62 | 82.69 | 82.47 | 81.35 | 81.04 | 80.13 | 79.23 | 75.33 | 81.11 |
DeepWalk | 82.41 | 82.35 | 82.30 | 82.04 | 81.94 | 80.67 | 79.34 | 77.57 | 74.55 | 80.35 | |
node2vec | 81.79 | 81.59 | 81.49 | 81.45 | 81.35 | 81.11 | 79.90 | 78.58 | 74.58 | 80.20 | |
GraRep | 79.75 | 79.42 | 79.29 | 79.14 | 79.07 | 78.57 | 78.48 | 77.94 | 73.12 | 78.31 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
CiteSeer | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
node2vec | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
GraRep | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 71.35 | 71.01 | 70.43 | 69.35 | 68.19 | 67.85 | 66.78 | 65.62 | 58.74 | 67.70 | |
Wiki | GAECSRL | 81.28 | 81.01 | 80.58 | 79.55 | 78.43 | 77.76 | 77.88 | 77.50 | 76.67 | 78.96 |
DeepWalk | 79.29 | 78.66 | 77.92 | 77.49 | 77.24 | 76.88 | 75.58 | 75.46 | 74.50 | 77.00 | |
node2vec | 79.92 | 79.59 | 79.36 | 78.62 | 77.89 | 77.02 | 76.37 | 76.26 | 75.70 | 77.86 | |
GraRep | 78.09 | 77.28 | 77.06 | 76.78 | 76.37 | 76.29 | 75.31 | 75.1 | 74.52 | 76.31 | |
SDNE | 70.66 | 69.57 | 69.35 | 69.21 | 68.82 | 68.24 | 67.81 | 67.33 | 67.14 | 68.68 | |
Planetoid | 76.56 | 76.17 | 75.83 | 75.54 | 74.57 | 73.53 | 72.00 | 71.51 | 70.65 | 74.04 | |
PubMed | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
node2vec | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
GraRep | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
SDNE | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
Planetoid | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 |
数据集 | 方法 | 标记率 | 平均AUC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 86.43 | 85.19 | 84.06 | 82.35 | 81.30 | 81.55 | 80.54 | 79.68 | 76.17 | 81.92 |
DeepWalk | 85.18 | 84.23 | 83.45 | 82.43 | 81.77 | 81.13 | 80.07 | 79.42 | 76.61 | 81.59 | |
node2vec | 85.75 | 84.36 | 83.84 | 82.58 | 81.49 | 80.07 | 79.73 | 78.61 | 75.85 | 81.36 | |
GraRep | 84.52 | 83.28 | 82.45 | 81.24 | 79.92 | 79.20 | 78.19 | 76.65 | 74.72 | 80.02 | |
SDNE | 81.47 | 80.43 | 79.35 | 78.46 | 77.38 | 76.49 | 75.56 | 74.58 | 71.79 | 77.28 | |
Planetoid | 78.86 | 77.67 | 76.52 | 75.28 | 74.34 | 73.42 | 72.26 | 70.57 | 68.88 | 74.20 | |
CiteSeer | GAECSRL | 89.96 | 88.69 | 87.12 | 86.84 | 86.09 | 85.45 | 84.37 | 83.65 | 81.47 | 85.96 |
DeepWalk | 88.65 | 87.41 | 86.73 | 85.48 | 84.96 | 84.14 | 83.29 | 81.74 | 79.86 | 84.70 | |
node2vec | 89.54 | 88.43 | 87.27 | 86.63 | 85.79 | 84.81 | 83.73 | 82.05 | 80.47 | 85.41 | |
GraRep | 87.47 | 86.26 | 85.37 | 84.52 | 83.19 | 82.35 | 81.24 | 80.34 | 78.49 | 83.25 | |
SDNE | 85.58 | 84.73 | 83.28 | 82.26 | 81.68 | 80.47 | 79.39 | 78.57 | 75.14 | 81.23 | |
Planetoid | 81.67 | 80.64 | 79.34 | 78.56 | 77.42 | 76.89 | 75.26 | 73.94 | 71.48 | 77.24 | |
Wiki | GAECSRL | 88.74 | 87.52 | 86.31 | 85.27 | 84.34 | 82.04 | 81.79 | 80.76 | 78.63 | 83.93 |
DeepWalk | 87.42 | 86.16 | 85.76 | 84.61 | 83.32 | 82.96 | 81.37 | 79.82 | 77.56 | 83.22 | |
node2vec | 86.67 | 85.27 | 84.71 | 83.19 | 82.49 | 81.64 | 80.38 | 79.29 | 76.72 | 82.26 | |
GraRep | 85.39 | 84.37 | 83.58 | 82.31 | 81.50 | 80.53 | 79.47 | 78.28 | 75.44 | 81.21 | |
SDNE | 82.33 | 81.56 | 80.27 | 79.23 | 78.45 | 77.30 | 76.14 | 74.47 | 72.65 | 78.04 | |
Planetoid | 79.67 | 78.61 | 77.32 | 76.56 | 75.60 | 74.65 | 72.21 | 71.35 | 69.46 | 75.05 | |
PubMed | GAECSRL | 92.74 | 91.63 | 90.22 | 89.62 | 88.45 | 87.32 | 86.29 | 85.87 | 83.74 | 88.43 |
DeepWalk | 91.54 | 90.12 | 89.86 | 88.60 | 87.41 | 86.63 | 85.37 | 84.59 | 82.84 | 87.44 | |
node2vec | 90.94 | 89.31 | 88.17 | 87.75 | 86.74 | 85.47 | 84.53 | 82.16 | 80.27 | 86.15 | |
GraRep | 88.71 | 87.42 | 86.57 | 85.39 | 84.41 | 83.25 | 82.17 | 81.34 | 79.36 | 84.29 | |
SDNE | 85.34 | 84.74 | 83.27 | 82.32 | 81.45 | 80.18 | 79.36 | 78.25 | 76.68 | 81.29 | |
Planetoid | 83.78 | 82.50 | 81.39 | 80.56 | 79.46 | 78.45 | 77.20 | 76.35 | 74.68 | 79.37 |
表5 不同数据集上链接预测的AUC值 (%)
Tab. 5 AUC values of link prediction on different datasets
数据集 | 方法 | 标记率 | 平均AUC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 86.43 | 85.19 | 84.06 | 82.35 | 81.30 | 81.55 | 80.54 | 79.68 | 76.17 | 81.92 |
DeepWalk | 85.18 | 84.23 | 83.45 | 82.43 | 81.77 | 81.13 | 80.07 | 79.42 | 76.61 | 81.59 | |
node2vec | 85.75 | 84.36 | 83.84 | 82.58 | 81.49 | 80.07 | 79.73 | 78.61 | 75.85 | 81.36 | |
GraRep | 84.52 | 83.28 | 82.45 | 81.24 | 79.92 | 79.20 | 78.19 | 76.65 | 74.72 | 80.02 | |
SDNE | 81.47 | 80.43 | 79.35 | 78.46 | 77.38 | 76.49 | 75.56 | 74.58 | 71.79 | 77.28 | |
Planetoid | 78.86 | 77.67 | 76.52 | 75.28 | 74.34 | 73.42 | 72.26 | 70.57 | 68.88 | 74.20 | |
CiteSeer | GAECSRL | 89.96 | 88.69 | 87.12 | 86.84 | 86.09 | 85.45 | 84.37 | 83.65 | 81.47 | 85.96 |
DeepWalk | 88.65 | 87.41 | 86.73 | 85.48 | 84.96 | 84.14 | 83.29 | 81.74 | 79.86 | 84.70 | |
node2vec | 89.54 | 88.43 | 87.27 | 86.63 | 85.79 | 84.81 | 83.73 | 82.05 | 80.47 | 85.41 | |
GraRep | 87.47 | 86.26 | 85.37 | 84.52 | 83.19 | 82.35 | 81.24 | 80.34 | 78.49 | 83.25 | |
SDNE | 85.58 | 84.73 | 83.28 | 82.26 | 81.68 | 80.47 | 79.39 | 78.57 | 75.14 | 81.23 | |
Planetoid | 81.67 | 80.64 | 79.34 | 78.56 | 77.42 | 76.89 | 75.26 | 73.94 | 71.48 | 77.24 | |
Wiki | GAECSRL | 88.74 | 87.52 | 86.31 | 85.27 | 84.34 | 82.04 | 81.79 | 80.76 | 78.63 | 83.93 |
DeepWalk | 87.42 | 86.16 | 85.76 | 84.61 | 83.32 | 82.96 | 81.37 | 79.82 | 77.56 | 83.22 | |
node2vec | 86.67 | 85.27 | 84.71 | 83.19 | 82.49 | 81.64 | 80.38 | 79.29 | 76.72 | 82.26 | |
GraRep | 85.39 | 84.37 | 83.58 | 82.31 | 81.50 | 80.53 | 79.47 | 78.28 | 75.44 | 81.21 | |
SDNE | 82.33 | 81.56 | 80.27 | 79.23 | 78.45 | 77.30 | 76.14 | 74.47 | 72.65 | 78.04 | |
Planetoid | 79.67 | 78.61 | 77.32 | 76.56 | 75.60 | 74.65 | 72.21 | 71.35 | 69.46 | 75.05 | |
PubMed | GAECSRL | 92.74 | 91.63 | 90.22 | 89.62 | 88.45 | 87.32 | 86.29 | 85.87 | 83.74 | 88.43 |
DeepWalk | 91.54 | 90.12 | 89.86 | 88.60 | 87.41 | 86.63 | 85.37 | 84.59 | 82.84 | 87.44 | |
node2vec | 90.94 | 89.31 | 88.17 | 87.75 | 86.74 | 85.47 | 84.53 | 82.16 | 80.27 | 86.15 | |
GraRep | 88.71 | 87.42 | 86.57 | 85.39 | 84.41 | 83.25 | 82.17 | 81.34 | 79.36 | 84.29 | |
SDNE | 85.34 | 84.74 | 83.27 | 82.32 | 81.45 | 80.18 | 79.36 | 78.25 | 76.68 | 81.29 | |
Planetoid | 83.78 | 82.50 | 81.39 | 80.56 | 79.46 | 78.45 | 77.20 | 76.35 | 74.68 | 79.37 |
1 | 孙金清,周慧,赵中英. 网络表示学习方法研究综述[J]. 山东科技大学学报(自然科学版), 2021, 40(1):117-128. 10.16452/j.cnki.sdkjzk.2021.01.014 |
SUN J Q, ZHOU H, ZHAO Z Y.A survey of network representation learning methods[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(1): 117-128. 10.16452/j.cnki.sdkjzk.2021.01.014 | |
2 | YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015:2111-2117. 10.1609/aaai.v29i1.9448 |
3 | CAO S S, LU W, XU Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900. 10.1145/2806416.2806512 |
4 | OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1105-1114. 10.1145/2939672.2939751 |
5 | WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017:203-209. 10.1609/aaai.v31i1.10488 |
6 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
7 | GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
8 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 |
9 | CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1145-1152. 10.1609/aaai.v30i1.10179 |
10 | WANG H W, WANG J, WANG J L, et al. GraphGAN: graph representation learning with generative adversarial nets[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:2508-2515. 10.1609/aaai.v32i1.11872 |
11 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-07-14].. 10.48550/arXiv.1609.02907 |
12 | YANG Z L, COHEN W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 40-48. |
13 | ZHANG X, CHEN W Z, YAN H F. TLINE: scalable transductive network embedding[C]// Proceedings of the 2016 Asia Information Retrieval Symposium, LNCS 9994. Cham: Springer, 2016: 98-110. |
14 | ZHANG D K, YIN J, ZHU X Q, et al. Network representation learning: a survey[J]. IEEE Transactions on Big Data, 2020, 6(1): 3-28. 10.1109/tbdata.2018.2850013 |
15 | SPERDUTI A, STARITA A. Supervised neural networks for the classification of structures[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 714-735. 10.1109/72.572108 |
16 | GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]// Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2005: 729-734. |
17 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. 10.1109/tnn.2008.2005605 |
18 | GALLICCHIO C, MICHELI A. Graph echo state networks[C]// Proceedings of the 2010 International Joint Conference on Neural Networks. Piscataway: IEEE, 2010: 1-8. 10.1109/ijcnn.2010.5596796 |
19 | CUI P, WANG X, PEI J, et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(5): 833-852. 10.1109/tkde.2018.2849727 |
20 | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386 |
21 | KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2021-07-15].. |
[1] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[2] | 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2726-2731. |
[3] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[4] | 杨兴耀, 陈羽, 于炯, 张祖莲, 陈嘉颖, 王东晓. 结合自我特征和对比学习的推荐模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2704-2710. |
[5] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[6] | 杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492. |
[7] | 林欣蕊, 王晓菲, 朱焱. 基于局部扩展社区发现的学术异常引用群体检测[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1855-1861. |
[8] | 汪炅, 唐韬韬, 贾彩燕. 无负采样的正样本增强图对比学习推荐方法PAGCL[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1485-1492. |
[9] | 郭洁, 林佳瑜, 梁祖红, 罗孝波, 孙海涛. 基于知识感知和跨层次对比学习的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1121-1127. |
[10] | 徐大鹏, 侯新民. 基于网络结构设计的图神经网络特征选择方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 663-670. |
[11] | 胡能兵, 蔡彪, 李旭, 曹旦华. 基于图池化对比学习的图分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3327-3334. |
[12] | 花晓雨, 李冬芬, 付优, 毕可骏, 应时, 王瑞锦. 结合层次图神经网络与长短期记忆的产业链风险评估预警模型[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3223-3231. |
[13] | 周北京, 王海荣, 王怡梦, 张丽丝, 马赫. 图谱嵌入传播的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3252-3259. |
[14] | 罗俊豪, 朱焱. 用于未对齐多模态语言序列情感分析的多交互感知网络[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 79-85. |
[15] | 王红斌, 房晓, 江虹. 融入三维语义特征的常识推理问答方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 138-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||