[1] LECUN Y, BOTTOU L, BENGIO P, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red hook,NY:Curran Associates Inc.,2012:1097-1105. [3] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-01-20]. https://arxiv.org/pdf/1409.1556.pdf. [4] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [5] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [6] DENIL M,SHAKIBI B,DINH L,et al. Predicting parameters in deep learning[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:2148-2156. [7] SAINATH T N,KINGSBURY B,SINDHWANI V,et al. Low-rank matrix factorization for deep neural network training with highdimensional output targets[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE,2013:6655-6659. [8] HAN S,MAO H,DALLY W J. Deep compression:compressing deep neural networks with pruning, trained quantization and Huffman coding[EB/OL].[2019-05-20]. https://arxiv.org/pdf/1510.00149.pdf. [9] HAN S,LIU X,MAO H,et al. EIE:efficient inference engine on compressed deep neural network[C]//Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Piscataway:IEEE,2016:243-254. [10] HARTIGAN J A,WONG M A. A K-means clustering algorithm[J]. Journal of the Royal Statistical Society,Series C(Applied Statistics),1979,28(1):100-108. [11] IANDOLA FORREST, HAN S, MOSKEWICZ M W, et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL].[2019-05-20]. https://arxiv.org/pdf/1602.07360.pdf. [12] GYSEL P M. Ristretto:hardware-oriented approximation of convolutional neural networks[EB/OL].[2019-05-20]. https://arxiv.org/pdf/1605.06402.pdf. [13] RAJASEGARAN J,JAYASUNDARA V,JAYASEKARA S,et al. DeepCaps:going deeper with capsule networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:10717-10725. [14] ZHAO R,SONG W,ZHANG W,et al. Accelerating binarized convolutional neural networks with software-programmable FPGAs[C]//Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York:ACM,2017:15-24. [15] WEI X,YU C H,ZHANG P,et al. Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs[C]//Proceedings of the 54th Annual Design Automation Conference. New York:ACM,2017:No. 29. [16] AIMAR A,MOSTAFA H,CALABRESE E,et al. NullHop:a flexible convolutional neural network accelerator based on sparse representations of feature maps[J]. IEEE Transactions on Neural Networks,2019,30(3):644-656. [17] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2019-04-08]. https://arxiv.org/pdf/1804.02767.pdf. [18] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [19] 施一飞. 对使用TensorRT加速AI深度学习推断效率的探索[J]. 科技视界,2017(31):26-27.(SHI Y F. Exploring the use of TensorRT to accelerate AI deep learning inference efficiency[J]. Science and Technology Vision,2017(31):26-27.) [20] 余子健, 马德, 严晓浪, 等. 基于FPGA的卷积神经网络加速器[J]. 计算机工程,2017,43(1):109-114,119.(YU Z J,MA D,YAN X L,et al. FPGA-based accelerator for convolutional neural network[J]. Computer Engineering,2017,43(1):109-114,119.) [21] 魏浚峰, 王东, 山丹. 基于FPGA的卷积神经网络加速器设计与实现[J]. 中国集成电路,2019,28(7):18-22,67.(WEI J F, WANG D,SHAN D. Design and implementation of convolutional neural network accelerator based on FPGA[J]. China Integrated Circuit,2019,28(7):18-22,67.) |