[1] 吴微, 苑玮琦. 手掌静脉图像识别技术综述[J]. 中国图象图形学报, 2013, 18(10):1215-1224.(WU W,YUAN W Q. A review of palm-vein image recognition[J]. Journal of Image and Graphics, 2013,18(10):1215-1224.) [2] KAVITHA S,SRIPRIYA P. A review on palm vein biometrics[J]. International Journal of Engineering and Technology, 2018, 7(3.6):407-409. [3] 徐笑宇, 姚鹏. 基于HOG与改进的SVM的手掌静脉识别算法[J]. 计算机工程与应用, 2016, 52(11):175-180, 214.(XU X Y, YAO P. Palm vein recognition algorithm based on HOG and improved SVM[J]. Computer Engineering and Applications, 2016,52(11):175-180,214.) [4] PAN M,KANG W. Palm vein recognition based on three local invariant feature extraction algorithms[C]//Proceedings of the 2011 Chinese Conference on Biometric Recognition,LNCS 7098. Berlin:Springer,2011:116-124. [5] KUBANEK M,SMORAWA D,HOLOTYAK T. Feature extraction of palm vein patterns based on two-dimensional density function[C]//Proceedings of the 2015 International Conference on Artificial Intelligence and Soft Computing,LNCS 9120. Cham:Springer, 2015:101-111. [6] 周宇佳, 刘娅琴, 杨丰, 等. 基于方向特征的手掌静脉识别[J]. 中国图象图形学报, 2014, 19(2):243-252.(ZHOU Y J,LIU Y Q, YANG F,et al. Palm-vein recognition based on oriented features[J]. Journal of Image and Graphics,2014,19(2):243-252.) [7] ZHANG B,GAO Y,ZHAO S,et al. Local derivative pattern versus local binary pattern:face recognition with high-order local pattern descriptor[J]. IEEE Transactions on Image Processing, 2010,19(2):533-544. [8] WANG R,WANG G,CHEN Z,et al. A palm vein identification system based on Gabor wavelet features[J]. Neural Computing and Applications,2014,24(1):161-168. [9] 刘新亮, 李星野. 基于Radon变换的多尺度虹膜特征提取算法[J]. 光电子·激光, 2008, 19(4):532-536.(LIU X L,LI X Y. A multi-scale iris feature extraction algorithm based on radon transform[J]. Journal of Optoelectronics·Laser,2008,19(4):532-536.) [10] ELNASIR S,SHAMSUDDIN S M,FAROKHI S. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis[J]. Journal of Electronic Imaging,2015,24(1):Article No. 013031. [11] SAVITHA A P,RAMEGOWDA. Acomparative study of palm vein feature extraction and classification[J]. Materials Today:Proceedings,2017,4(11):11882-11887. [12] ELNASIR S,SHAMSUDDIN S M. Proposed scheme for palm vein recognition based on linear discrimination analysis and nearest neighbour classifier[C]//Proceedings of the 2014 International Symposium on Biometrics and Security Technologies. Piscataway:IEEE,2014:67-72. [13] GUO X,WANG C,PING Z. A palm-vein recognition algorithm based on LPP and HM-LBP[J]. IOP Conference Series Earth and Environmental Science,2018,153(3):Article No. 032027. [14] 杜东阳, 路利军, 符瑞阳, 等. 手掌静脉识别:基于端到端卷积神经网络方法[J]. 南方医科大学学报, 2019, 39(2):207-214. (DU D Y,LU L J,FU R Y,et al. Palm vein recognition based on end-to-end convolutional neuralnetwork[J]. Journal of Southern Medical University,2019,39(2):207-214.) [15] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1-12. [16] 黄盛, 李菲菲, 陈虬. 基于改进的深度残差网络的计算断层扫描图像分类算法[J]. 光学学报, 2020, 40(3):50-58.(HUANG S, LI F F,CHEN Q. Computed tomography image classification algorithm based on improved deep residualnetwork[J]. Acta Optica Sinica,2020,40(3):50-58.) [17] CLEVERT D A,UNTERTHINER T,HOCHREITER S. Fast and accurate deepnetwork learning by Exponential Linear Units (ELUs)[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1511.07289.pdf. [18] IOFFE S,SZEGEDY C. Batch normalization:accelerating deepnetwork training by reducing internal covariate shift[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1502.03167.pdf. [19] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neuralnetworks by preventing co-adaptation of feature detectors[EB/OL].[2019-11-20]. https://arxiv.org/pdf/1207.0580.pdf. [20] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutionalnetworks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [21] 娄梦莹, 袁丽莎, 刘娅琴, 等. 基于自适应融合的手掌静脉增强方法[J]. 计算机应用, 2019, 39(4):1176-1182.(LOU M Y, YUAN L S,LIU Y Q,et al. Palm vein enhancement method based on adaptive fusion[J]. Journal of Computer Applications, 2019,39(4):1176-1182.) [22] LOU M Y,LIU Y Q,YANG F,et al. Image enhancement of palm veins based on adaptive fusion and Gabor filter[C]//Proceedings of the 20195nd International Conference on Fuzzy Systems and Data Mining. Amsterdam:IOS Press,2019:296-304. [23] QIU S,LIU Y,ZHOU Y,et al. Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical transformer[J]. Expert Systems with Applications,2016,64:618-632. [24] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neuralnetworks[C]//Proceedings of the 201225th International Conference on Neural Information Processing Systems. Red hook:Curran Associates Inc.,2012:1097-1105. [25] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE. 2015:1-9. |