计算机应用 ›› 2019, Vol. 39 ›› Issue (12): 3548-3555.DOI: 10.11772/j.issn.1001-9081.2019050869

• 人工智能 • 上一篇    下一篇

边缘智能背景下的手写数字识别

王建仁, 马鑫, 段刚龙, 薛宏全   

  1. 西安理工大学 经济与管理学院, 西安 710054
  • 收稿日期:2019-05-22 修回日期:2019-07-02 出版日期:2019-12-10 发布日期:2019-07-23
  • 作者简介:王建仁(1961-),男,陕西西安人,副教授,硕士,主要研究方向:数据挖掘、商务智能、决策支持;马鑫(1995-),男,山东潍坊人,硕士研究生,主要研究方向:机器学习、深度学习、推荐系统;段刚龙(1977-),男,陕西西安人,副教授,博士,主要研究方向:数据挖掘、商务智能、决策支持;薛宏全(1978-),男,陕西西安人,讲师,博士,主要研究方向:计算智能、先进制造管理。
  • 基金资助:
    陕西省重点学科资助项目(107-00X901)。

Handwritten numeral recognition under edge intelligence background

WANG Jianren, MA Xin, DUAN Ganglong, XUE Hongquan   

  1. College of Economics and Management, Xi'an University of Technology, Xi'an Shaanxi 710054, China
  • Received:2019-05-22 Revised:2019-07-02 Online:2019-12-10 Published:2019-07-23
  • Contact: 马鑫
  • Supported by:
    This work is partially supported by the Shaanxi Provincial Key Discipline Project (107-00X901).

摘要: 随着边缘智能的快速发展,现有手写数字识别卷积网络模型的发展已越来越不适应边缘部署、算力下降的要求,且存在小样本泛化能力较差和网络训练成本较高等问题。借鉴卷积神经网络(CNN)经典结构、Leaky_ReLU算法、dropout算法和遗传算法及自适应和混合池化思想构建了基于LeNet-DL改进网络的手写数字识别模型,分别在大样本数据集MNIST和小样本真实数据集REAL上与LeNet、LeNet+sigmoid、AlexNet等算法进行对比实验。改进网络的大样本识别精度可达99.34%,性能提升约0.83%;小样本识别精度可达78.89%,性能提升约8.34%。实验结果表明,LeNet-DL网络相较于传统CNN在大样本和小样本数据集上的训练成本更低、性能更优且模型泛化能力更强。

关键词: 边缘智能, 卷积网络, 手写数字识别, Leaky_ReLU, 混合池化, 自适应, dropout, 遗传算法

Abstract: With the rapid development of edge intelligence, the development of existing handwritten numeral recognition convolutional network models has become less and less suitable for the requirements of edge deployment and computing power declining, and there are problems such as poor generalization ability of small samples and high network training costs. Drawing on the classic structure of Convolutional Neural Network (CNN), Leaky_ReLU algorithm, dropout algorithm, genetic algorithm and adaptive and mixed pooling ideas, a handwritten numeral recognition model based on LeNet-DL improved convolutional neural network was constructed. The proposed model was compared on large sample MNIST dataset and small sample REAL dataset with LeNet, LeNet+sigmoid, AlexNet and other algorithms. The improved network has the large sample identification accuracy up to 99.34%, with the performance improvement of about 0.83%, and the small sample recognition accuracy up to 78.89%, with the performance improvement of about 8.34%. The experimental results show that compared with traditional CNN, LeNet-DL network has lower training cost, better performance and stronger model generalization ability on large sample and small sample datasets.

Key words: edge intelligence, Convolutional Neural Network (CNN), handwritten numeral recognition, Leaky_ReLU, mixing pooling, adaptive, dropout, genetic algorithm

中图分类号: