[1] 卜令正,王洪栋,朱美强,等.基于改进卷积神经网络的多源数字识别算法[J].计算机应用,2018,38(12):3403-3408.(BU L Z, WANG H D, ZHU M Q, et al. Multi-source digital recognition algorithm based on improved convolutional neural network[J]. Journal of Computer Applications, 2018, 38(12):3403-3408.) [2] AKHAND M A H, AHMED M, RAHMAN M M H, et al. Convolutional neural network training incorporating rotation-based generated patterns and handwritten numeral recognition of major Indian scripts[J]. IETE Journal of Research, 2018, 64(2):176-194. [3] 董延华,陈中华,宋和烨,等.改进特征匹配算法在银行卡号识别中的应用[J].吉林大学学报(理学版),2018,56(1):126-129.(DONG Y H, CHEN Z H, SONG H Y, et al. Application of improved feature matching algorithm in bank card number identification[J]. Journal of Jilin University (Science Edition), 2018, 56(1):126-129.) [4] 陆靖滨,许丽.基于自适应特征提取的数显仪表识别系统[J].现代电子技术,2017,40(24):147-150.(LU J B, XU L. Digital-display instrument recognition system based on adaptive feature extraction[J]. Modern Electronic Technique, 2017, 40(24):147-150.) [5] 凌翔,赖锟,王昔鹏.基于模板匹配方法的不均匀照度车牌图像识别[J].重庆交通大学学报(自然科学版),2018,37(8):102-106.(LING X, LAI K, WANG X P. Uneven illumination license plate image recognition base on template matching method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(8):102-106.) [6] SAHA S, SAHA S, CHATTERJEE S K, et al. A machine learning framework for recognizing handwritten digits using convexity-based feature vector encoding[C]//Proceedings of International Ethical Hacking Conference 2018, AISC 811. Singapore:Springer, 2018:369-380. [7] JIAO J, WANG X, DENG Z, et al. A fast template matching algorithm based on principal orientation difference[J]. International Journal of Advanced Robotic Systems, 2018, 15(3):1-9. [8] 郭伟林,邓洪敏,石雨鑫.基于局部二进制和支持向量机的手写体数字识别[J].计算机应用,2018,38(S2):282-285, 289.(GUO W L, DENG H M, SHI Y X. Handwritten digit recognition based on local binary and support vector machine[J]. Journal of Computer Applications, 2018, 38(S2):282-285, 289.) [9] 甘胜江,白艳宇,孙连海,等.融合改进K近邻和随机森林的机器学习方法[J].计算机工程与设计,2017,38(8):2251-2255,2275.(GAN S J, BAI Y Y, SUN L H, et al. Machine learning method fusing improved K-nearest neighbors and random forest[J]. Computer Engineering and Design, 2017, 38(8):2251-2255, 2275.) [10] 潘虎,陈斌,李全文.基于二叉树和Adaboost算法的纸币号码识别[J].计算机应用,2011,31(2):396-398.(PAN H, CHEN B, LI Q W. Paper currency number recognition based on binary tree and Adaboost algorithm[J]. Journal of Computer Applications, 2011, 31(2):396-398.) [11] KHAN M A, SHARIF M, JAVED M Y, et al. License number plate recognition system using entropy-based features selection approach with SVM[J]. IET Image Processing, 2018, 12(2):200-209. [12] KULKARNI S R, RAJENDRAN B. Spiking neural networks for handwritten digit recognition-supervised learning and network optimization[J]. Neural Networks, 2018, 103:118-127. [13] YUN Y, LI D, DUAN Z. Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features[J]. IET Intelligent Transport Systems, 2018, 12(3):213-219. [14] QIAO J, WANG G, LI W, et al. An adaptive deep Q-learning strategy for handwritten digit recognition[J]. Neural Networks, 2018,107:61-71. [15] TRIVEDI A, SRIVASTAVA S, MISHRA A, et al. Hybrid evolutionary approach for Devanagari handwritten numeral recognition using convolutional neural network[J]. Procedia Computer Science, 2018, 125:525-532. [16] 茹晓青,华国光,李丽宏,等.基于形变卷积神经网络的手写体数字识别研究[J].微电子学与计算机,2019,36(4):47-51.(RU X Q, HUA G G, LI L H, et al. Handwritten digit recognition based on deformable convolutional neural network[J]. Microelectronics and Computer, 2019, 36(4):47-51.) [17] 马义超,赵运基,张新良.基于PCA初始化卷积核的CNN手写数字识别算法[J].计算机工程与应用,2019,55(13):134-139.(MA Y C, ZHAO Y J, ZHANG X L. CNN handwritten digit recognition algorithm based on PCA initialization convolution kernel[J]. Computer Engineering and Applications, 2019, 55(13):134-139.) [18] 施巍松,孙辉,曹杰,等.边缘计算:万物互联时代新型计算模型[J].计算机研究与发展,2017,54(5):907-924.(SHI W S, SUN H, CAO J, et al. Edge computing-an emerging computing model for the Internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5):907-924.) [19] 李肯立,刘楚波.边缘智能:现状和展望[J].大数据,2019,5(3):69-75.(LI K L, LIU C B. Edge intelligence:state-of-the-art and expectations[J]. Big Data, 2019, 5(3):69-75.) [20] 袁培燕,蔡云云.移动边缘计算中一种贪心策略的内容卸载方案[J].计算机应用,2019,39(9):2664-2668.(YUAN P Y, CAI Y Y. Content offloading scheme of greedy strategy in mobile edge computing system[J]. Journal of Computer Applications, 2019, 39(9):2664-2668.) [21] XU J, WANG S, BHARGAVA B K, et al. A blockchain-enabled trustless crowd-intelligence ecosystem on mobile edge computing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6):3538-3547. [22] TAN L T, HU R Q, HANZO L. Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4):3086-3099. [23] HUANG Z Q, LIN K J, TSAI B L, et al. Building edge intelligence for online activity recognition in service-oriented IoT systems[J]. Future Generation Computer Systems, 2018, 87:557-567. [24] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [25] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2012:1097-1105. |