[1] BISHOP C. Pattern Recognition and Machine Learning[M]. Berlin:Springer, 2006:560-571. [2] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [3] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. [4] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.(ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.) [5] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detector[J]. arXiv Preprint, 2012, 2012:arXiv.1207.0580. [6] SRIVASTAVA N, HINTON G, KRIZHEVSKY A,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. [7] GOOGFELLOW I, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia:JMLR W&CP, 2013:1319-1327. [8] WAN L, ZEILER M D, ZHANG S,et al. Regularization of neural networks using dropconnect[C]//Proceeding of the 30th International Conference on Machine Learning. Atlanta, Georgia:JMLR W&CP, 2013:1058-1066. [9] LAMBERT J, SENER O, SAVARESE S. Deep learning under privileged information using heteroscedastic dropout[EB/OL].[2018-08-29]. https://arxiv.org/pdf/1805.11614.pdf. [10] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[EB/OL].[2018-09-17]. https://arxiv.org/pdf/1301.3557.pdf. [11] WU H, GU X. Towards dropout training for convolutional neural networks[J]. Neural Networks, 2015, 71:1-10. [12] LIN M, CHEN Q, YAN S. Network in network[J/OL]. arXiv Preprint,[2018-09-17]. https://arxiv.org/pdf/1312.4400.pdf. [13] 赵慧珍,刘付显,李龙跃,等.基于混合maxout单元的卷积神经网络性能优化[J].通信学报,2017,38(7):105-114.(ZHAO H Z, LIU F X, LI L Y, et al. Improving deep convolutional neural networks with mixed maxout units[J]. Journal on Communications, 2017, 38(7):105-114.) [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2012:1097-1105. [15] KRIZHEVSKY A. Learning multiple layers of features from tiny images[D]. Toronto:University of Toronto, 2009:16-22. [16] AL-SAFFAR A A M, TAO H, TALAB M A. Review of deep convolution neural network in image classification[C]//Proceedings of the 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications. Piscataway, NJ:IEEE, 2017:26-31. [17] XIE L, WANG J, LIN W, et al. Towards reversal-invariant image representation[J]. International Journal of Computer Vision, 2017, 123(2):226-250. [18] GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning[M]. Cambridge, MA:MIT Press, 2016:11-12. [19] FENG Y, ZENG S, YANG Y, et al. Study on the optimization of CNN based on image identification[C]//Proceedings of the 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science. Piscataway, NJ:IEEE, 2018:123-126. |