[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences,1982,11(5):341-356. [2] BONIKOWSKI Z, BRYNIARSKI E, WYBRANIEC-SKARDOWSKA U. Extensions and intentions in the rough set theory[J]. Information Science, 1998, 107(1/2/3/4):149-167. [3] DUBOIS D,PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems,1990,17(2/3):191-209 [4] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and System Sciences,1993,46(1):39-59. [5] 刘瑞新, 孙士保, 秦克云. 变精度覆盖粗糙集[J]. 计算机工程与应用, 2008, 44(12):47-50.(LIU R X,SUN S B,QIN K Y. On variable precision covering rough set[J]. Computer Engineering and Applications,2008,44(12):47-50.) [6] ZHENG X,DAI J. A variable precision covering generalized rough set model[C]//Proceedings of the 6th International Conference on Rough Sets and Knowledge Technology, LNCS 6954. Berlin:Springer,2011:120-125. [7] ZHAO S,TSANG E C C,CHEN D. The model of fuzzy variable precision rough sets[J]. IEEE Transactions on Fuzzy Systems, 2009,17(2):451-467. [8] AGGARWAL M. Probabilistic variable precision fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2016,24(1):29-39. [9] JENSEN R, SHEN Q. Fuzzy-rough attribute reduction with application to web categorization[J]. Fuzzy Sets and Systems, 2004,141(3):469-485. [10] SKOWRON A,RAUSZER C. The discernibility matrices and functions in information systems[M]//SŁOWIŃSKI R. Intelligent Decision Support:Handbook of Applications and Advances in the Rough Set Theory, TDLD 11. Dordrecht:Springer, 1992:331-362. [11] WANG C,HE Q,CHEN D,et al. A novel method for attribute reduction of covering decision systems[J]. Information Sciences, 2014,254:181-196. [12] 王国胤, 于洪, 杨大春. 基于条件信息熵的决策表约简[J]. 计算机学报, 2002, 25(7):759-766.(WANG G Y,YU H,YANG D C. Decision table reduction based on conditional information entropy[J]. Chinese Journal of Computers, 2002, 25(7):759-766.) [13] MI J,WU W,ZHANG W. Approaches to knowledge reduction based on variable precision rough set model[J]. Information Sciences,2004,159(3/4):255-272. [14] CHEN R C,CHENG K F,HSIEH C F. Using rough set and support vector machine fornetwork intrusion detection[J]. International Journal of Network Security and Its Applications, 2009,1(1):1-13. [15] ZHAO H. Intrusion detection ensemble algorithm based on bagging and neighborhood rough set[J]. International Journal of Security and Its Applications,2013,7(5):193-204. [16] PANIGRAHI A,PATRA M R. Fuzzy rough classification models fornetwork intrusion detection[J]. Transactions on Machine Learning and Artificial Intelligence, 2016, 4(2):Article No. 1882. [17] 刘金平, 张五霞, 唐朝晖, 等. 基于模糊粗糙集属性约简与GMM-LDA最优聚类簇特征学习的自适应网络入侵检测[J]. 控制与决策, 2019, 34(2):243-251.(LIU J P,ZHANG W X, TANG Z H,et al. Adaptivenetwork intrusion detection based on fuzzy rough set-based attribute reduction and GMM-LDA-based optimal cluster feature learning[J]. Control and Decision,2019, 34(2):243-251.) [18] QIAN Y,LIANG J,PEDRYCZ W,et al. Positive approximation:An accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence,2010,174(9/10):597-618. [19] YANG T,LI Q,ZHOU B. Related family:a new method for attribute reduction of covering information systems[J]. Information Sciences,2013,228:175-191 [20] SHAKIBA A,HOOSHMANDASL M R. Data volume reduction in covering approximation spaces with respect to twenty-two types of covering based rough sets[J]. International Journal of Approximate Reasoning,2016,75:13-38 [21] TSANG E C C,CHEN D,YEUNG D S. Approximations and reducts with covering generalized rough sets[J]. Computers and Mathematics with Applications,2008,56(1):279-289 [22] HU Q,YU D,LIU J,et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008,178(18):3577-3594. [23] WANG C,QI Y,SHAO M,et al. A fitting model for feature selection with fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2017,25(4):741-753. [24] WANG C,HU Q,WANG X,et al. Feature selection based on neighborhood discrimination index[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(7):2986-2999. |