《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (5): 1355-1366.DOI: 10.11772/j.issn.1001-9081.2021030497
所属专题: 人工智能
收稿日期:2021-04-02
修回日期:2021-09-15
接受日期:2021-09-22
发布日期:2022-06-11
出版日期:2022-05-10
通讯作者:
孙林
作者简介:孙林(1979—),男,河南南阳人,副教授,博士,CCF会员,主要研究方向:粒计算、数据挖掘、机器学习、生物信息学 sunlin@htu.edu.cn基金资助:
Lin SUN1,2(
), Jing ZHAO1, Jiucheng XU1,2, Xinya WANG1
Received:2021-04-02
Revised:2021-09-15
Accepted:2021-09-22
Online:2022-06-11
Published:2022-05-10
Contact:
Lin SUN
About author:SUN Lin, born in 1979,Ph. D.,associate professor. His researchinterests include granular computing,data mining,machine learning,bioinformatics.Supported by:摘要:
针对经典的帝王蝶优化(MBO)算法不能很好地处理连续型数据,以及粗糙集模型对于大规模、高维复杂的数据处理能力不足等问题,提出了基于邻域粗糙集(NRS)和MBO的特征选择算法。首先,将局部扰动和群体划分策略与MBO算法结合,并构建传输机制以形成一种二进制MBO(BMBO)算法;其次,引入突变算子增强算法的探索能力,设计了基于突变算子的BMBO(BMBOM)算法;然后,基于NRS的邻域度构造适应度函数,并对初始化的特征子集的适应度值进行评估并排序;最后,使用BMBOM算法通过不断迭代搜索出最优特征子集,并设计了一种元启发式特征选择算法。在基准函数上评估BMBOM算法的优化性能,并在UCI数据集上评价所提出的特征选择算法的分类能力。实验结果表明,在5个基准函数上,BMBOM算法的最优值、最差值、平均值以及标准差明显优于MBO和粒子群优化(PSO)算法;在UCI数据集上,与基于粗糙集的优化特征选择算法、结合粗糙集与优化算法的特征选择算法、结合NRS与优化算法的特征选择算法、基于二进制灰狼优化的特征选择算法相比,所提特征选择算法在分类精度、所选特征数和适应度值这3个指标上表现良好,能够选择特征数少且分类精度高的最优特征子集。
中图分类号:
孙林, 赵婧, 徐久成, 王欣雅. 基于邻域粗糙集和帝王蝶优化的特征选择算法[J]. 计算机应用, 2022, 42(5): 1355-1366.
Lin SUN, Jing ZHAO, Jiucheng XU, Xinya WANG. Feature selection algorithm based on neighborhood rough set and monarch butterfly optimization[J]. Journal of Computer Applications, 2022, 42(5): 1355-1366.
| 函数 | 公式 | 变量范围 | 理论最优值 |
|---|---|---|---|
| Sphere | [-5.12,5.12] D | 0 | |
| Schwefel2. 22 | [-10,10] D | 0 | |
| Step | [-100,100] D | 0 | |
| Griank | [-600,600] D | 0 | |
| Ackley | [-30,30] D | 0 | |
| Rastrigin | [-5.12,5.12] D | 0 |
表1 六个基准函数信息
Tab. 1 Information of six benchmark functions
| 函数 | 公式 | 变量范围 | 理论最优值 |
|---|---|---|---|
| Sphere | [-5.12,5.12] D | 0 | |
| Schwefel2. 22 | [-10,10] D | 0 | |
| Step | [-100,100] D | 0 | |
| Griank | [-600,600] D | 0 | |
| Ackley | [-30,30] D | 0 | |
| Rastrigin | [-5.12,5.12] D | 0 |
| 函数 | 算法 | 最优值 | 最差值 | 平均值 | 标准差 | 运行时间/s |
|---|---|---|---|---|---|---|
| f 1 | PSO | 4.23E | 6.12E+01 | 5.09E+01 | 4.06E+00 | 18 |
| MBO | 7.90E | 2.15E+02 | 6.67E+01 | 7.92E+01 | 177 | |
| BMBOM | 4.75E-08 | 8.19E-05 | 8.66E-06 | 1.62E-05 | 516 | |
| f2 | PSO | 7.76E+03 | 1.57E+04 | 1.20E+04 | 1.99E+03 | 54 |
| MBO | 3.91E+02 | 5.06E+04 | 2.37E+04 | 1.49E+04 | 142 | |
| BMBOM | 0 | 1.36E+02 | 5.72E+01 | 4.58E+01 | 430 | |
| f3 | PSO | 9.33E+03 | 1.60E+04 | 1.24E+04 | 1.63E+03 | 53 |
| MBO | 0 | 7.28E+04 | 2.38E+04 | 2.71E+04 | 176 | |
| BMBOM | 0 | 8.28E+02 | 2.76E+01 | 1.51E+02 | 388 | |
| f4 | PSO | 6.57E+05 | 1.43E+06 | 1.15E+06 | 1.66E+05 | 28 |
| MBO | 1 | 6.36E+02 | 1.80E+02 | 2.29E+02 | 175 | |
| BMBOM | 1 | 3.18E+01 | 2.03E+00 | 5.62E+00 | 395 | |
| f5 | PSO | 4.22E+01 | 1.35E+02 | 6.09E+01 | 2.72E+01 | 19 |
| MBO | 1.32E-01 | 8.95E+01 | 3.46E+01 | 2.36E+01 | 138 | |
| BMBOM | 1.30E-04 | 9.65E-03 | 1.92E-03 | 2.16E-03 | 341 | |
| f6 | PSO | 2.06E+02 | 2.66E+02 | 2.50E+02 | 1.37E+01 | 54 |
| MBO | 2.32E-05 | 4.45E+02 | 1.68E+02 | 1.45E+02 | 177 | |
| BMBOM | 2.81E-07 | 1.12E+02 | 6.34E+00 | 2.27E+01 | 363 |
表2 三种优化算法在6个基准函数30维上的实验结果
Tab. 2 Experimental results of three optimization algorithms on 30-dimensions of six benchmark functions
| 函数 | 算法 | 最优值 | 最差值 | 平均值 | 标准差 | 运行时间/s |
|---|---|---|---|---|---|---|
| f 1 | PSO | 4.23E | 6.12E+01 | 5.09E+01 | 4.06E+00 | 18 |
| MBO | 7.90E | 2.15E+02 | 6.67E+01 | 7.92E+01 | 177 | |
| BMBOM | 4.75E-08 | 8.19E-05 | 8.66E-06 | 1.62E-05 | 516 | |
| f2 | PSO | 7.76E+03 | 1.57E+04 | 1.20E+04 | 1.99E+03 | 54 |
| MBO | 3.91E+02 | 5.06E+04 | 2.37E+04 | 1.49E+04 | 142 | |
| BMBOM | 0 | 1.36E+02 | 5.72E+01 | 4.58E+01 | 430 | |
| f3 | PSO | 9.33E+03 | 1.60E+04 | 1.24E+04 | 1.63E+03 | 53 |
| MBO | 0 | 7.28E+04 | 2.38E+04 | 2.71E+04 | 176 | |
| BMBOM | 0 | 8.28E+02 | 2.76E+01 | 1.51E+02 | 388 | |
| f4 | PSO | 6.57E+05 | 1.43E+06 | 1.15E+06 | 1.66E+05 | 28 |
| MBO | 1 | 6.36E+02 | 1.80E+02 | 2.29E+02 | 175 | |
| BMBOM | 1 | 3.18E+01 | 2.03E+00 | 5.62E+00 | 395 | |
| f5 | PSO | 4.22E+01 | 1.35E+02 | 6.09E+01 | 2.72E+01 | 19 |
| MBO | 1.32E-01 | 8.95E+01 | 3.46E+01 | 2.36E+01 | 138 | |
| BMBOM | 1.30E-04 | 9.65E-03 | 1.92E-03 | 2.16E-03 | 341 | |
| f6 | PSO | 2.06E+02 | 2.66E+02 | 2.50E+02 | 1.37E+01 | 54 |
| MBO | 2.32E-05 | 4.45E+02 | 1.68E+02 | 1.45E+02 | 177 | |
| BMBOM | 2.81E-07 | 1.12E+02 | 6.34E+00 | 2.27E+01 | 363 |
| 序号 | 名称 | 特征数 | 样本数 |
|---|---|---|---|
| 1 | Breastcancer | 9 | 699 |
| 2 | Congress | 16 | 435 |
| 3 | Heart | 13 | 270 |
| 4 | Hepatitis | 19 | 155 |
| 5 | Ionosphere | 34 | 351 |
| 6 | Lungcancer | 56 | 32 |
| 7 | Lymphography | 18 | 148 |
| 8 | Sonar | 60 | 208 |
| 9 | Spect | 22 | 267 |
| 10 | Tic-tac-toe | 9 | 958 |
| 11 | Vote | 16 | 300 |
| 12 | Waveform | 40 | 5 000 |
| 13 | Wine | 13 | 178 |
| 14 | Zoo | 16 | 101 |
表3 14个UCI数据集信息
Tab. 3 Information of fourteen UCI datasets
| 序号 | 名称 | 特征数 | 样本数 |
|---|---|---|---|
| 1 | Breastcancer | 9 | 699 |
| 2 | Congress | 16 | 435 |
| 3 | Heart | 13 | 270 |
| 4 | Hepatitis | 19 | 155 |
| 5 | Ionosphere | 34 | 351 |
| 6 | Lungcancer | 56 | 32 |
| 7 | Lymphography | 18 | 148 |
| 8 | Sonar | 60 | 208 |
| 9 | Spect | 22 | 267 |
| 10 | Tic-tac-toe | 9 | 958 |
| 11 | Vote | 16 | 300 |
| 12 | Waveform | 40 | 5 000 |
| 13 | Wine | 13 | 178 |
| 14 | Zoo | 16 | 101 |
| 数据集 | FSNB | ARRSFA | PSORSFS | FSARSR | QCSIA_FS | DQBGOA_MR |
|---|---|---|---|---|---|---|
| Average | 94.60 | 81.34 | 81.07 | 80.62 | 80.82 | 83.04 |
| Breastcancer | 95.67 | 92.61 | 92.30 | 91.28 | 92.90 | 94.71 |
| Hepatitis | 95.04 | 83.25 | 82.10 | 82.75 | 82.75 | 83.75 |
| Ionosphere | 95.04 | 82.02 | 83.17 | 83.97 | 82.06 | 84.71 |
| Lungcancer | 89.15 | 65.80 | 69.00 | 62.42 | 60.92 | 69.19 |
| Lymphography | 91.62 | 73.97 | 73.70 | 74.13 | 74.16 | 75.43 |
| Spect | 94.77 | 78.16 | 78.48 | 75.83 | 77.24 | 79.07 |
| Tic-tac-toe | 95.03 | 75.62 | 79.53 | 78.72 | 81.73 | 82.48 |
| Vote | 95.03 | 95.37 | 95.41 | 96.32 | 95.74 | 95.89 |
| Wine | 97.53 | 72.42 | 67.64 | 70.25 | 71.76 | 74.24 |
| Zoo | 97.14 | 94.14 | 89.35 | 90.55 | 88.91 | 90.89 |
表4 FSNB与5种基于粗糙集的优化特征选择算法的分类精度实验结果 ( %)
Tab. 4 Experimental results of FSNB and five optimized feature selection algorithms based on rough sets on classification accuracy
| 数据集 | FSNB | ARRSFA | PSORSFS | FSARSR | QCSIA_FS | DQBGOA_MR |
|---|---|---|---|---|---|---|
| Average | 94.60 | 81.34 | 81.07 | 80.62 | 80.82 | 83.04 |
| Breastcancer | 95.67 | 92.61 | 92.30 | 91.28 | 92.90 | 94.71 |
| Hepatitis | 95.04 | 83.25 | 82.10 | 82.75 | 82.75 | 83.75 |
| Ionosphere | 95.04 | 82.02 | 83.17 | 83.97 | 82.06 | 84.71 |
| Lungcancer | 89.15 | 65.80 | 69.00 | 62.42 | 60.92 | 69.19 |
| Lymphography | 91.62 | 73.97 | 73.70 | 74.13 | 74.16 | 75.43 |
| Spect | 94.77 | 78.16 | 78.48 | 75.83 | 77.24 | 79.07 |
| Tic-tac-toe | 95.03 | 75.62 | 79.53 | 78.72 | 81.73 | 82.48 |
| Vote | 95.03 | 95.37 | 95.41 | 96.32 | 95.74 | 95.89 |
| Wine | 97.53 | 72.42 | 67.64 | 70.25 | 71.76 | 74.24 |
| Zoo | 97.14 | 94.14 | 89.35 | 90.55 | 88.91 | 90.89 |
| 数据集 | FSNB | ARRSFA | PSORSFS | FSARSR | QCSIA_FS | DQBGOA_MR |
|---|---|---|---|---|---|---|
| Average | 8.49 | 7.23 | 9.02 | 8.65 | 7.34 | 5.92 |
| Breastcancer | 5.75 | 3.70 | 3.80 | 4.00 | 3.50 | 3.00 |
| Hepatitis | 14.65 | 4.10 | 6.20 | 5.60 | 5.00 | 3.70 |
| Ionosphere | 14.65 | 4.60 | 10.20 | 8.50 | 6.10 | 4.10 |
| Lungcancer | 6.30 | 7.90 | 19.40 | 17.10 | 11.60 | 4.30 |
| Lymphography | 14.75 | 9.50 | 8.60 | 7.80 | 7.80 | 7.10 |
| Spect | 5.00 | 14.00 | 15.10 | 16.10 | 14.70 | 14.00 |
| Tic-tac-toe | 5.00 | 7.20 | 7.40 | 8.00 | 7.00 | 7.00 |
| Vote | 5.00 | 9.50 | 8.80 | 9.60 | 8.10 | 7.50 |
| Wine | 7.20 | 3.20 | 3.60 | 3.60 | 3.10 | 3.00 |
| Zoo | 6.55 | 8.60 | 7.10 | 6.20 | 6.50 | 5.50 |
表5 FSNB与5种基于粗糙集的优化特征选择算法的所选特征数实验结果
Tab. 5 Experimental results of FSNB and five optimized feature selection algorithms based on rough set on number of selected features
| 数据集 | FSNB | ARRSFA | PSORSFS | FSARSR | QCSIA_FS | DQBGOA_MR |
|---|---|---|---|---|---|---|
| Average | 8.49 | 7.23 | 9.02 | 8.65 | 7.34 | 5.92 |
| Breastcancer | 5.75 | 3.70 | 3.80 | 4.00 | 3.50 | 3.00 |
| Hepatitis | 14.65 | 4.10 | 6.20 | 5.60 | 5.00 | 3.70 |
| Ionosphere | 14.65 | 4.60 | 10.20 | 8.50 | 6.10 | 4.10 |
| Lungcancer | 6.30 | 7.90 | 19.40 | 17.10 | 11.60 | 4.30 |
| Lymphography | 14.75 | 9.50 | 8.60 | 7.80 | 7.80 | 7.10 |
| Spect | 5.00 | 14.00 | 15.10 | 16.10 | 14.70 | 14.00 |
| Tic-tac-toe | 5.00 | 7.20 | 7.40 | 8.00 | 7.00 | 7.00 |
| Vote | 5.00 | 9.50 | 8.80 | 9.60 | 8.10 | 7.50 |
| Wine | 7.20 | 3.20 | 3.60 | 3.60 | 3.10 | 3.00 |
| Zoo | 6.55 | 8.60 | 7.10 | 6.20 | 6.50 | 5.50 |
| 数据集 | FSNB | GARS | PSORS | ABCRS | FARS | SSORS | CSRS | HSRS | IRRARS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 89.70 | 76.49 | 78.72 | 82.57 | 79.81 | 83.22 | 82.59 | 82.48 | 85.79 |
| Breastcancer | 95.67 | 87.28 | 91.05 | 96.49 | 92.73 | 95.39 | 93.42 | 97.37 | 97.99 |
| Congress | 77.02 | 89.66 | 90.41 | 91.38 | 91.38 | 95.86 | 93.79 | 92.79 | 95.17 |
| Heart | 76.98 | 65.06 | 66.41 | 70.15 | 69.41 | 71.57 | 70.15 | 73.13 | 75.18 |
| Ionosphere | 95.04 | 79.85 | 80.40 | 84.90 | 80.80 | 84.70 | 85.40 | 84.00 | 86.07 |
| Lungcancer | 89.15 | 60.00 | 65.36 | 69.64 | 64.60 | 69.64 | 70.64 | 66.00 | 75.98 |
| Waveform | 96.89 | 74.82 | 76.82 | 80.60 | 77.90 | 81.90 | 80.60 | 80.20 | 83.25 |
| Zoo | 97.14 | 78.79 | 80.61 | 84.85 | 81.88 | 83.50 | 84.12 | 83.88 | 86.88 |
表6 FSNB与8种结合粗糙集与优化算法的特征选择算法的分类精度实验结果 ( %)
Tab. 6 Experimental results of FSNB and eight feature selection algorithms combining rough set and optimization algorithm on classification accuracy
| 数据集 | FSNB | GARS | PSORS | ABCRS | FARS | SSORS | CSRS | HSRS | IRRARS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 89.70 | 76.49 | 78.72 | 82.57 | 79.81 | 83.22 | 82.59 | 82.48 | 85.79 |
| Breastcancer | 95.67 | 87.28 | 91.05 | 96.49 | 92.73 | 95.39 | 93.42 | 97.37 | 97.99 |
| Congress | 77.02 | 89.66 | 90.41 | 91.38 | 91.38 | 95.86 | 93.79 | 92.79 | 95.17 |
| Heart | 76.98 | 65.06 | 66.41 | 70.15 | 69.41 | 71.57 | 70.15 | 73.13 | 75.18 |
| Ionosphere | 95.04 | 79.85 | 80.40 | 84.90 | 80.80 | 84.70 | 85.40 | 84.00 | 86.07 |
| Lungcancer | 89.15 | 60.00 | 65.36 | 69.64 | 64.60 | 69.64 | 70.64 | 66.00 | 75.98 |
| Waveform | 96.89 | 74.82 | 76.82 | 80.60 | 77.90 | 81.90 | 80.60 | 80.20 | 83.25 |
| Zoo | 97.14 | 78.79 | 80.61 | 84.85 | 81.88 | 83.50 | 84.12 | 83.88 | 86.88 |
| 数据集 | FSNB | GARS | PSORS | ABCRS | FARS | SSORS | CSRS | HSRS | IRRARS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 7.68 | 710.79 | 602.76 | 635.32 | 619.06 | 596.46 | 665.62 | 585.41 | 376.36 |
| Breastcancer | 5.75 | 492.10 | 399.13 | 399.13 | 437.57 | 336.92 | 399.13 | 422.20 | 329.23 |
| Congress | 5.05 | 254.91 | 219.24 | 146.16 | 140.51 | 151.38 | 137.90 | 143.12 | 135.29 |
| Heart | 9.15 | 140.94 | 120.69 | 117.99 | 120.15 | 112.59 | 124.20 | 116.10 | 113.67 |
| Ionosphere | 14.65 | 193.75 | 188.49 | 133.03 | 144.96 | 143.21 | 132.68 | 143.21 | 134.08 |
| Lungcancer | 6.30 | 17.15 | 13.92 | 13.86 | 12.48 | 11.62 | 11.52 | 11.74 | 11.52 |
| Waveform | 6.30 | 3 815.00 | 3 225.00 | 3 600.00 | 3 435.00 | 3 385.00 | 3 805.00 | 3 220.00 | 1 880.00 |
| Zoo | 6.55 | 61.71 | 52.82 | 37.07 | 42.72 | 34.54 | 48.88 | 41.51 | 30.70 |
表7 FSNB与8种结合粗糙集与优化算法的特征选择算法所选特征数实验结果
Tab. 7 Experimental results of FSNB and eight feature selection algorithms combining rough set and optimization algorithm on number of selected features
| 数据集 | FSNB | GARS | PSORS | ABCRS | FARS | SSORS | CSRS | HSRS | IRRARS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 7.68 | 710.79 | 602.76 | 635.32 | 619.06 | 596.46 | 665.62 | 585.41 | 376.36 |
| Breastcancer | 5.75 | 492.10 | 399.13 | 399.13 | 437.57 | 336.92 | 399.13 | 422.20 | 329.23 |
| Congress | 5.05 | 254.91 | 219.24 | 146.16 | 140.51 | 151.38 | 137.90 | 143.12 | 135.29 |
| Heart | 9.15 | 140.94 | 120.69 | 117.99 | 120.15 | 112.59 | 124.20 | 116.10 | 113.67 |
| Ionosphere | 14.65 | 193.75 | 188.49 | 133.03 | 144.96 | 143.21 | 132.68 | 143.21 | 134.08 |
| Lungcancer | 6.30 | 17.15 | 13.92 | 13.86 | 12.48 | 11.62 | 11.52 | 11.74 | 11.52 |
| Waveform | 6.30 | 3 815.00 | 3 225.00 | 3 600.00 | 3 435.00 | 3 385.00 | 3 805.00 | 3 220.00 | 1 880.00 |
| Zoo | 6.55 | 61.71 | 52.82 | 37.07 | 42.72 | 34.54 | 48.88 | 41.51 | 30.70 |
| 数据集 | 分类精度/% | 适应度值 | 所选特征数 | 运行时间/s | ||||
|---|---|---|---|---|---|---|---|---|
| FSNM | FSNB | FSNM | FSNB | FSNM | FSNB | FSNM | FSNB | |
| Average | 87.47 | 91.51 | 0.274 8 | 0.231 3 | 10.45 | 8.64 | 251 | 198 |
| Breastcancer | 95.24 | 95.67 | 0.370 8 | 0.342 8 | 6.25 | 5.75 | 119 | 118 |
| Congress | 72.68 | 77.02 | 0.208 9 | 0.209 0 | 5.00 | 5.05 | 55 | 55 |
| Heart | 75.22 | 76.98 | 0.401 9 | 0.408 3 | 8.15 | 9.15 | 33 | 33 |
| Hepatitis | 94.64 | 95.04 | 0.277 5 | 0.272 0 | 15.40 | 14.65 | 1 075 | 1 073 |
| Ionosphere | 94.10 | 95.04 | 0.276 1 | 0.272 0 | 15.10 | 14.65 | 1 074 | 1 065 |
| Lungcancer | 73.77 | 89.15 | 0.138 6 | 0.105 0 | 11.00 | 6.30 | 6 | 5 |
| Lymphography | 84.09 | 91.62 | 0.280 7 | 0.085 1 | 25.22 | 14.75 | 865 | 45 |
| Sonar | 81.87 | 84.21 | 0.200 2 | 0.173 6 | 17.80 | 15.55 | 24 | 24 |
| Spect | 86.96 | 94.77 | 0.297 8 | 0.220 5 | 6.00 | 5.00 | 52 | 81 |
| Tic-tac-toe | 85.62 | 95.03 | 0.313 9 | 0.219 5 | 6.20 | 5.00 | 80 | 143 |
| Vote | 93.51 | 95.03 | 0.303 6 | 0.219 5 | 8.60 | 5.00 | 80 | 85 |
| Waveform | 95.02 | 96.89 | 0.236 7 | 0.221 4 | 6.50 | 6.30 | 18 | 17 |
| Wine | 96.14 | 97.53 | 0.300 8 | 0.261 5 | 7.95 | 7.20 | 21 | 21 |
| Zoo | 95.72 | 97.14 | 0.240 2 | 0.227 9 | 7.10 | 6.55 | 18 | 16 |
表8 FSNB与FSNM在分类精度、适应度值和所选特征数上的实验结果
Tab. 8 Experimental results of FSNM and FSNB on classification accuracy, fitness value and number of selected features
| 数据集 | 分类精度/% | 适应度值 | 所选特征数 | 运行时间/s | ||||
|---|---|---|---|---|---|---|---|---|
| FSNM | FSNB | FSNM | FSNB | FSNM | FSNB | FSNM | FSNB | |
| Average | 87.47 | 91.51 | 0.274 8 | 0.231 3 | 10.45 | 8.64 | 251 | 198 |
| Breastcancer | 95.24 | 95.67 | 0.370 8 | 0.342 8 | 6.25 | 5.75 | 119 | 118 |
| Congress | 72.68 | 77.02 | 0.208 9 | 0.209 0 | 5.00 | 5.05 | 55 | 55 |
| Heart | 75.22 | 76.98 | 0.401 9 | 0.408 3 | 8.15 | 9.15 | 33 | 33 |
| Hepatitis | 94.64 | 95.04 | 0.277 5 | 0.272 0 | 15.40 | 14.65 | 1 075 | 1 073 |
| Ionosphere | 94.10 | 95.04 | 0.276 1 | 0.272 0 | 15.10 | 14.65 | 1 074 | 1 065 |
| Lungcancer | 73.77 | 89.15 | 0.138 6 | 0.105 0 | 11.00 | 6.30 | 6 | 5 |
| Lymphography | 84.09 | 91.62 | 0.280 7 | 0.085 1 | 25.22 | 14.75 | 865 | 45 |
| Sonar | 81.87 | 84.21 | 0.200 2 | 0.173 6 | 17.80 | 15.55 | 24 | 24 |
| Spect | 86.96 | 94.77 | 0.297 8 | 0.220 5 | 6.00 | 5.00 | 52 | 81 |
| Tic-tac-toe | 85.62 | 95.03 | 0.313 9 | 0.219 5 | 6.20 | 5.00 | 80 | 143 |
| Vote | 93.51 | 95.03 | 0.303 6 | 0.219 5 | 8.60 | 5.00 | 80 | 85 |
| Waveform | 95.02 | 96.89 | 0.236 7 | 0.221 4 | 6.50 | 6.30 | 18 | 17 |
| Wine | 96.14 | 97.53 | 0.300 8 | 0.261 5 | 7.95 | 7.20 | 21 | 21 |
| Zoo | 95.72 | 97.14 | 0.240 2 | 0.227 9 | 7.10 | 6.55 | 18 | 16 |
| 数据集 | FSNB | GANRS | PSONRS | ABCNRS | FANRS | SSONRS | CSNRS | HSNRS | IRRANRS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 89.70 | 79.24 | 83.34 | 85.92 | 81.44 | 86.23 | 85.42 | 86.16 | 88.57 |
| Breastcancer | 95.67 | 95.18 | 96.93 | 97.81 | 93.42 | 96.49 | 95.61 | 97.37 | 98.68 |
| Congress | 77.02 | 90.43 | 97.24 | 95.86 | 94.48 | 96.93 | 94.48 | 95.17 | 96.93 |
| Heart | 76.98 | 66.52 | 69.10 | 71.54 | 70.86 | 72.91 | 71.61 | 75.00 | 76.80 |
| Ionosphere | 95.04 | 80.58 | 81.39 | 86.02 | 81.98 | 85.60 | 86.27 | 85.49 | 86.61 |
| Lungcancer | 89.15 | 62.86 | 68.60 | 70.22 | 65.37 | 71.56 | 72.59 | 69.26 | 79.26 |
| Waveform | 96.89 | 78.92 | 80.88 | 83.04 | 79.42 | 83.18 | 82.96 | 84.99 | 84.64 |
| Zoo | 97.14 | 80.21 | 89.22 | 96.97 | 84.58 | 96.97 | 94.44 | 95.87 | 97.06 |
表9 FSNB与8种结合邻域粗糙集与优化算法的特征选择算法的分类精度实验结果 ( %)
Tab. 9 Experimental results of FSNB and eight feature selection algorithms combining NRS and optimization algorithms on classification accuracy
| 数据集 | FSNB | GANRS | PSONRS | ABCNRS | FANRS | SSONRS | CSNRS | HSNRS | IRRANRS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 89.70 | 79.24 | 83.34 | 85.92 | 81.44 | 86.23 | 85.42 | 86.16 | 88.57 |
| Breastcancer | 95.67 | 95.18 | 96.93 | 97.81 | 93.42 | 96.49 | 95.61 | 97.37 | 98.68 |
| Congress | 77.02 | 90.43 | 97.24 | 95.86 | 94.48 | 96.93 | 94.48 | 95.17 | 96.93 |
| Heart | 76.98 | 66.52 | 69.10 | 71.54 | 70.86 | 72.91 | 71.61 | 75.00 | 76.80 |
| Ionosphere | 95.04 | 80.58 | 81.39 | 86.02 | 81.98 | 85.60 | 86.27 | 85.49 | 86.61 |
| Lungcancer | 89.15 | 62.86 | 68.60 | 70.22 | 65.37 | 71.56 | 72.59 | 69.26 | 79.26 |
| Waveform | 96.89 | 78.92 | 80.88 | 83.04 | 79.42 | 83.18 | 82.96 | 84.99 | 84.64 |
| Zoo | 97.14 | 80.21 | 89.22 | 96.97 | 84.58 | 96.97 | 94.44 | 95.87 | 97.06 |
| 数据集 | FSNB | GANRS | PSONRS | ABCNRS | FANRS | SSONRS | CSNRS | HSNRS | IRRANRS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 7.68 | 685.39 | 576.52 | 608.29 | 583.31 | 579.51 | 644.16 | 563.34 | 354.53 |
| Breastcancer | 5.75 | 466.23 | 381.79 | 359.99 | 370.82 | 355.51 | 389.90 | 399.55 | 312.87 |
| Congress | 5.05 | 245.21 | 206.58 | 136.81 | 128.19 | 140.33 | 124.85 | 134.07 | 124.67 |
| Heart | 9.15 | 124.71 | 119.53 | 110.70 | 105.30 | 108.86 | 122.15 | 112.48 | 106.22 |
| Ionosphere | 14.65 | 183.68 | 179.43 | 124.08 | 137.45 | 133.20 | 123.48 | 134.96 | 125.27 |
| Lungcancer | 6.30 | 16.39 | 13.10 | 13.19 | 11.82 | 10.81 | 10.63 | 10.81 | 11.09 |
| Waveform | 6.30 | 3 702.00 | 3 085.00 | 3 478.50 | 3 289.50 | 3 276.00 | 3 692.00 | 3 112.50 | 1 773.00 |
| Zoo | 6.55 | 59.52 | 50.20 | 34.78 | 40.05 | 31.83 | 46.11 | 39.04 | 28.60 |
表10 FSNB与8种结合邻域粗糙集与优化算法的特征选择算法所选特征数实验结果
Tab. 10 Experimental results of FSNB and eight feature selection algorithms combining NRS and optimization algorithms on number of selected features
| 数据集 | FSNB | GANRS | PSONRS | ABCNRS | FANRS | SSONRS | CSNRS | HSNRS | IRRANRS |
|---|---|---|---|---|---|---|---|---|---|
| Average | 7.68 | 685.39 | 576.52 | 608.29 | 583.31 | 579.51 | 644.16 | 563.34 | 354.53 |
| Breastcancer | 5.75 | 466.23 | 381.79 | 359.99 | 370.82 | 355.51 | 389.90 | 399.55 | 312.87 |
| Congress | 5.05 | 245.21 | 206.58 | 136.81 | 128.19 | 140.33 | 124.85 | 134.07 | 124.67 |
| Heart | 9.15 | 124.71 | 119.53 | 110.70 | 105.30 | 108.86 | 122.15 | 112.48 | 106.22 |
| Ionosphere | 14.65 | 183.68 | 179.43 | 124.08 | 137.45 | 133.20 | 123.48 | 134.96 | 125.27 |
| Lungcancer | 6.30 | 16.39 | 13.10 | 13.19 | 11.82 | 10.81 | 10.63 | 10.81 | 11.09 |
| Waveform | 6.30 | 3 702.00 | 3 085.00 | 3 478.50 | 3 289.50 | 3 276.00 | 3 692.00 | 3 112.50 | 1 773.00 |
| Zoo | 6.55 | 59.52 | 50.20 | 34.78 | 40.05 | 31.83 | 46.11 | 39.04 | 28.60 |
| 数据集 | FSNB | BGWO | ABGWO | ABGWO-V1 | ABGWO-V2 | ABGWO-V3 | ABGWO-V4 |
|---|---|---|---|---|---|---|---|
| Average | 91.93 | 77.61 | 78.39 | 78.29 | 78.04 | 78.08 | 78.14 |
| Breastcancer | 95.67 | 80.48 | 80.58 | 80.42 | 80.24 | 80.59 | 79.96 |
| Congress | 77.02 | 83.45 | 84.02 | 83.32 | 83.18 | 83.19 | 83.57 |
| Ionosphere | 95.04 | 85.95 | 86.90 | 86.90 | 86.91 | 86.63 | 86.37 |
| Lymphography | 91.62 | 46.24 | 47.27 | 47.27 | 47.33 | 47.14 | 47.55 |
| Sonar | 84.21 | 80.22 | 81.23 | 81.23 | 81.73 | 81.57 | 81.17 |
| Spect | 94.77 | 73.31 | 74.69 | 74.69 | 73.95 | 74.06 | 73.71 |
| Tic-tac-toe | 95.03 | 77.46 | 76.15 | 76.15 | 75.66 | 75.75 | 76.71 |
| Waveform | 96.89 | 81.71 | 82.38 | 82.38 | 81.56 | 81.74 | 81.79 |
| Zoo | 97.14 | 89.69 | 92.28 | 92.28 | 91.81 | 92.09 | 92.39 |
表11 FSNB与6种基于二进制灰狼优化的特征选择算法的分类精度实验结果 ( %)
Tab. 11 Experimental results of FSNB and six feature selection algorithms based on binary grey wolf optimizer on classification accuracy
| 数据集 | FSNB | BGWO | ABGWO | ABGWO-V1 | ABGWO-V2 | ABGWO-V3 | ABGWO-V4 |
|---|---|---|---|---|---|---|---|
| Average | 91.93 | 77.61 | 78.39 | 78.29 | 78.04 | 78.08 | 78.14 |
| Breastcancer | 95.67 | 80.48 | 80.58 | 80.42 | 80.24 | 80.59 | 79.96 |
| Congress | 77.02 | 83.45 | 84.02 | 83.32 | 83.18 | 83.19 | 83.57 |
| Ionosphere | 95.04 | 85.95 | 86.90 | 86.90 | 86.91 | 86.63 | 86.37 |
| Lymphography | 91.62 | 46.24 | 47.27 | 47.27 | 47.33 | 47.14 | 47.55 |
| Sonar | 84.21 | 80.22 | 81.23 | 81.23 | 81.73 | 81.57 | 81.17 |
| Spect | 94.77 | 73.31 | 74.69 | 74.69 | 73.95 | 74.06 | 73.71 |
| Tic-tac-toe | 95.03 | 77.46 | 76.15 | 76.15 | 75.66 | 75.75 | 76.71 |
| Waveform | 96.89 | 81.71 | 82.38 | 82.38 | 81.56 | 81.74 | 81.79 |
| Zoo | 97.14 | 89.69 | 92.28 | 92.28 | 91.81 | 92.09 | 92.39 |
| 数据集 | FSNB | BGWO | ABGWO | ABGWO-V1 | ABGWO-V2 | ABGWO-V3 | ABGWO-V4 |
|---|---|---|---|---|---|---|---|
| Average | 8.73 | 16.62 | 13.19 | 12.78 | 12.53 | 12.14 | 12.86 |
| Breastcancer | 5.75 | 5.30 | 3.80 | 4.45 | 3.75 | 3.95 | 4.05 |
| Congress | 5.05 | 9.90 | 8.25 | 7.75 | 8.10 | 7.40 | 8.50 |
| Ionosphere | 14.65 | 21.00 | 16.75 | 15.10 | 14.00 | 14.90 | 15.75 |
| Lymphography | 14.75 | 11.85 | 8.85 | 8.65 | 8.00 | 7.65 | 9.00 |
| Sonar | 15.55 | 36.60 | 30.45 | 28.20 | 28.65 | 27.25 | 27.85 |
| Spect | 5.00 | 15.45 | 11.15 | 11.65 | 11.85 | 10.65 | 11.60 |
| Tic-tac-toe | 5.00 | 6.80 | 5.90 | 6.00 | 5.30 | 5.35 | 5.85 |
| Waveform | 6.30 | 31.30 | 24.35 | 23.75 | 24.55 | 23.05 | 24.10 |
| Zoo | 6.55 | 11.40 | 9.20 | 9.45 | 8.60 | 9.10 | 9.05 |
表12 FSNB与6种基于二进制灰狼优化的特征选择算法所选特征数实验结果
Tab. 12 Experimental results of FSNB and six feature selection algorithms based on binary grey wolf optimizer on number of selected features
| 数据集 | FSNB | BGWO | ABGWO | ABGWO-V1 | ABGWO-V2 | ABGWO-V3 | ABGWO-V4 |
|---|---|---|---|---|---|---|---|
| Average | 8.73 | 16.62 | 13.19 | 12.78 | 12.53 | 12.14 | 12.86 |
| Breastcancer | 5.75 | 5.30 | 3.80 | 4.45 | 3.75 | 3.95 | 4.05 |
| Congress | 5.05 | 9.90 | 8.25 | 7.75 | 8.10 | 7.40 | 8.50 |
| Ionosphere | 14.65 | 21.00 | 16.75 | 15.10 | 14.00 | 14.90 | 15.75 |
| Lymphography | 14.75 | 11.85 | 8.85 | 8.65 | 8.00 | 7.65 | 9.00 |
| Sonar | 15.55 | 36.60 | 30.45 | 28.20 | 28.65 | 27.25 | 27.85 |
| Spect | 5.00 | 15.45 | 11.15 | 11.65 | 11.85 | 10.65 | 11.60 |
| Tic-tac-toe | 5.00 | 6.80 | 5.90 | 6.00 | 5.30 | 5.35 | 5.85 |
| Waveform | 6.30 | 31.30 | 24.35 | 23.75 | 24.55 | 23.05 | 24.10 |
| Zoo | 6.55 | 11.40 | 9.20 | 9.45 | 8.60 | 9.10 | 9.05 |
| 平均排序 | |||||||
|---|---|---|---|---|---|---|---|
| FSNB | ARRSFA | PSORSFS | FSARSR | QCSIA_FS | DQBGOA_MR | ||
| 1.50 | 4.20 | 4.60 | 4.35 | 4.25 | 2.10 | 25.56 | 9.41 |
表13 FSNB与5种基于粗糙集的优化特征选择算法的统计检验
Tab. 13 Statistical test of FSNB and five optimized feature selection algorithms based on rough set
| 平均排序 | |||||||
|---|---|---|---|---|---|---|---|
| FSNB | ARRSFA | PSORSFS | FSARSR | QCSIA_FS | DQBGOA_MR | ||
| 1.50 | 4.20 | 4.60 | 4.35 | 4.25 | 2.10 | 25.56 | 9.41 |
| 平均排序 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| FSNB | GARS | PSORS | ABCRS | FARS | SSORS | CSRS | HSRS | IRRARS | ||
| 2.57 | 8.86 | 7.71 | 4.29 | 6.93 | 4.07 | 4.14 | 4.57 | 1.86 | 41.09 | 16.54 |
表14 FSNB与8种结合粗糙集与优化算法的特征选择算法的统计检验
Tab. 14 Statistical test of FSNB and eight feature selection algorithms combining rough set and optimization algorithms
| 平均排序 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| FSNB | GARS | PSORS | ABCRS | FARS | SSORS | CSRS | HSRS | IRRARS | ||
| 2.57 | 8.86 | 7.71 | 4.29 | 6.93 | 4.07 | 4.14 | 4.57 | 1.86 | 41.09 | 16.54 |
| 平均排序 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| FSNB | GANRS | PSONRS | ABCNRS | FANRS | SSONRS | CSNRS | HSNRS | IRRANRS | ||
| 2.86 | 8.71 | 6.00 | 4.21 | 7.64 | 3.93 | 5.29 | 4.29 | 2.07 | 34.77 | 9.83 |
表15 FSNB与8种结合邻域粗糙集与优化算法的特征选择算法的统计检验
Tab. 15 Statistical test of FSNB and eight feature selection algorithms combining NRS and optimization algorithms
| 平均排序 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| FSNB | GANRS | PSONRS | ABCNRS | FANRS | SSONRS | CSNRS | HSNRS | IRRANRS | ||
| 2.86 | 8.71 | 6.00 | 4.21 | 7.64 | 3.93 | 5.29 | 4.29 | 2.07 | 34.77 | 9.83 |
| 平均排序 | ||||||||
|---|---|---|---|---|---|---|---|---|
| FSNB | BGWO | ABGWO | ABGWO-V1 | ABGWO-V2 | ABGWO-V3 | ABGWO-V4 | ||
| 1.67 | 5.56 | 3.28 | 3.83 | 4.78 | 4.67 | 4.22 | 18.51 | 4.17 |
表16 FSNB与6种基于二进制灰狼优化的特征选择算法的统计检验
Tab. 16 Statistical test of FSNB and six feature selection algorithms based on binary grey wolf optimizer
| 平均排序 | ||||||||
|---|---|---|---|---|---|---|---|---|
| FSNB | BGWO | ABGWO | ABGWO-V1 | ABGWO-V2 | ABGWO-V3 | ABGWO-V4 | ||
| 1.67 | 5.56 | 3.28 | 3.83 | 4.78 | 4.67 | 4.22 | 18.51 | 4.17 |
图1 FSNB与5种基于粗糙集的优化特征选择算法的Bonferroni-Dunn检验结果
Fig. 1 Bonferroni-Dunn test results of FSNB and five optimized feature selection algorithms based on rough set
图2 FSNB与8种结合粗糙集与优化算法的特征选择算法的Bonferroni-Dunn检验结果
Fig. 2 Bonferroni-Dunn test results of FSNB and eight feature selection algorithms based on rough set and optimization algorithms
图3 FSNB与8种结合邻域粗糙集与优化算法的特征选择算法的Bonferroni-Dunn检验结果
Fig. 3 Bonferroni-Dunn test results of FSNB and eight feature selection algorithms based on NRS and optimization algorithms
图4 FSNB与6种基于二进制灰狼优化的特征选择算法的Bonferroni-Dunn检验结果
Fig. 4 Bonferroni-Dunn test results of FSNB and six feature selection algorithms based on binary grey wolf optimizer
| 1 | 吴信东,董丙冰,堵新政,等.数据治理技术[J].软件学报,2019,30(9):2830-2856. 10.13328/j.cnki.jos.005854 |
| WU X D, DONG B B, DU X Z, et al. Data governance technology [J]. Journal of Software, 2019, 30(9): 2830-2856. 10.13328/j.cnki.jos.005854 | |
| 2 | 邓威,郭钇秀,李勇,等.基于特征选择和Stacking集成学习的配电网网损预测[J].电力系统保护与控制,2020,48(15):108-115. 10.19783/j.cnki.pspc.191097 |
| DENG W, GUO Y X, LI Y, et al. Power losses prediction based on feature selection and Stacking integrated learning [J]. Power System Protection and Control, 2020, 48(15): 108-115. 10.19783/j.cnki.pspc.191097 | |
| 3 | HU P, PAN J S, CHU S C. Improved binary grey wolf optimizer and its application for feature selection [J]. Knowledge-Based Systems, 2020, 195: Article No.105746. 10.1016/j.knosys.2020.105746 |
| 4 | TUBISHAT M, IDRIS N, SHUIB L, et al. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection [J]. Expert Systems with Applications, 2020, 145: Article No.113122. 10.1016/j.eswa.2019.113122 |
| 5 | 刘艳,程璐,孙林.基于K-S检验和邻域粗糙集的特征选择方法[J].河南师范大学学报(自然科学版),2019,47(2):21-28. 10.16366/j.cnki.1000-2367.2019.02.004 |
| LIU Y, CHENG L, SUN L. Feature selection method based on K-S test and neighborhood rough sets [J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(2): 21-28. 10.16366/j.cnki.1000-2367.2019.02.004 | |
| 6 | 刘琨,封硕.加强局部搜索能力的人工蜂群算法[J].河南师范大学学报(自然科学版),2021,49(2):15-24. 10.16366/j.cnki.1000-2367.2021.02.003 |
| LIU K, FENG S. An improved artificial bee colony algorithm for enhancing local search ability [J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(2): 15-24. 10.16366/j.cnki.1000-2367.2021.02.003 | |
| 7 | ZAIMOGLU E A, CELEBI N, YURTAY N. Binary-coded tug of war optimization algorithm for attribute reduction based on rough set [J]. Journal of Multiple-Valued Logic and Soft Computing, 2020, 35(1/2): 93-111. 10.1007/978-3-030-23756-1_144 |
| 8 | HUDA R K, BANKA H. Efficient feature selection and classification algorithm based on PSO and rough sets [J]. Neural Computing and Applications, 2019, 31(8): 4287-4303. 10.1007/s00521-017-3317-9 |
| 9 | TAWHID M A, IBRAHIM A M. Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm [J]. International Journal of Machine Learning and Cybernetics, 2020, 11(3): 573-602. 10.1007/s13042-019-00996-5 |
| 10 | WANG D, CHEN H M, LI T R, et al. A novel quantum grasshopper optimization algorithm for feature selection [J]. International Journal of Approximate Reasoning, 2020, 127: 33-53. 10.1016/j.ijar.2020.08.010 |
| 11 | AZIZ M ABD EL, HASSANIEN A E. Modified cuckoo search algorithm with rough sets for feature selection [J]. Neural Computing and Applications, 2018, 29(4): 925-934. 10.1007/s00521-016-2473-7 |
| 12 | ZOU L, LI H X, JIANG W, et al. An improved fish swarm algorithm for neighborhood rough set reduction and its application [J]. IEEE Access, 2019, 7: 90277-90288. 10.1109/access.2019.2926799 |
| 13 | 薛占熬,庞文莉,姚守倩,等.基于前景理论的直觉模糊三支决策模型[J].河南师范大学学报(自然科学版),2020,48(5):31-36,79. |
| XUE Z A, PANG W L, YAO S Q, et al. The prospect theory based intuitionistic fuzzy three-way decisions model [J]. Journal of Henan Normal University (Natural Science Edition), 2020, 48(5): 31-36, 79. | |
| 14 | HU Q H, YU D R, LIU J F, et al. Neighborhood rough set based heterogeneous feature subset selection [J]. Information Sciences, 2018, 178(18): 3577-3594. |
| 15 | 彭鹏,倪志伟,朱旭辉,等.基于改进二元萤火虫群优化算法和邻域粗糙集的属性约简方法[J].模式识别与人工智能,2020,33(2):95-105. |
| PENG P, NI Z W, ZHU X H, et al. Attribute reduction method based on improved binary glowworm swarm optimization algorithm and neighborhood rough set [J]. Pattern Recognition and Artificial Intelligence, 2020, 33(2): 95-105. | |
| 16 | SUN L, CHEN S S, XU J C, et al. Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation [J]. Complexity, 2019, 2019: Article No.4182148. 10.1155/2019/4182148 |
| 17 | WANG G G, DEB S, CUI Z H. Monarch butterfly optimization [J]. Neural Computing and Applications, 2019, 31(7): 1995-2014. 10.1007/s00521-015-1923-y |
| 18 | DORGHAM O M, ALWESHAH M, RYALAT M H, et al. Monarch butterfly optimization algorithm for computed tomography image segmentation [J]. Multimedia Tools and Applications, 2021, 80(20): 30057-30090. 10.1007/s11042-020-10147-6 |
| 19 | SOLTANI P, HADAVANDI E. A monarch butterfly optimization- based neural network simulator for prediction of siro-spun yarn tenacity [J]. Soft Computing, 2019, 23(20): 10521-10535. 10.1007/s00500-018-3624-9 |
| 20 | 孙林,赵婧,徐久成,等.基于改进帝王蝶优化算法的特征选择方法[J].模式识别与人工智能,2020,33(11):981-994. |
| SUN L, ZHAO J, XU J C, et al. Feature selection method based on improved monarch butterfly optimization algorithm [J]. Pattern Recognition and Artificial Intelligence, 2020, 33(11): 981-994. | |
| 21 | MAFARJA M, ALJARAH I, FARIS H, et al. Binary grasshopper optimisation algorithm approaches for feature selection problems [J]. Expert Systems with Applications, 2019, 117: 267-286. 10.1016/j.eswa.2018.09.015 |
| 22 | SUN L, WANG L Y, DING W P, et al. Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets [J]. IEEE Transactions on Fuzzy Systems, 2021, 29(1): 19-33. 10.1109/tfuzz.2020.2989098 |
| 23 | LONG N C, MEESAD P, UNGER H. Attribute reduction based on rough sets and the discrete firefly algorithm [M]// BOONKRONG S, UNGER H, MEESAD P. Recent Advances in Information and Communication Technology, AISC 265. Cham: Springer, 2014: 13-22. |
| 24 | WANG X Y, YANG J, TENG X L, et al. Feature selection based on rough sets and particle swarm optimization [J]. Pattern Recognition Letters, 2007, 28(4): 459-471. 10.1016/j.patrec.2006.09.003 |
| 25 | CHEN Y M, ZHU Q X, XU H R. Finding rough set reducts with fish swarm algorithm [J]. Knowledge-Based Systems, 2015, 81: 22-29. 10.1016/j.knosys.2015.02.002 |
| 26 | ZOUACHE D, ABDELAZIZ F BEN. A cooperative swarm intelligence algorithm based on quantum-inspired and rough sets for feature selection [J]. Computers and Industrial Engineering, 2018, 115: 26-36. 10.1016/j.cie.2017.10.025 |
| 27 | IBRAHIM R A, ELAZIZ M ABD, OLIVA D, et al. An improved runner-root algorithm for solving feature selection problems based on rough sets and neighborhood rough sets [J]. Applied Soft Computing, 2020, 97(Pt B): Article No.105517. 10.1016/j.asoc.2019.105517 |
| 28 | JING S Y. A hybrid genetic algorithm for feature subset selection in rough set theory [J]. Soft Computing, 2014, 18(7): 1373-1382. 10.1007/s00500-013-1150-3 |
| 29 | ZHANG Y, GONG D W, HU Y, et al. Feature selection algorithm based on bare bones particle swarm optimization [J]. Neurocomputing, 2015, 148: 150-157. 10.1016/j.neucom.2012.09.049 |
| 30 | SUGUNA N, THANUSHKODI K G. An independent rough set approach hybrid with artificial bee colony algorithm for dimensionality reduction [J]. American Journal of Applied Sciences, 2011, 8(3): 261- 266. 10.3844/ajassp.2011.261.266 |
| 31 | 汪春峰,褚新月.基于精英邻居引导的萤火虫算法[J].河南师范大学学报(自然科学版),2019,47(6):15-21. |
| WAND C F, CHU X Y. A firefly algorithm based on elite neighborhood guide [J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(6): 15-21. | |
| 32 | AZIZ M ABD EL, HASSANIEN A E. An improved social spider optimization algorithm based on rough sets for solving minimum number attribute reduction problem [J]. Neural Computing and Applications, 2018, 30(8): 2441-2452. 10.1007/s00521-016-2804-8 |
| 33 | 徐小琴,王博,赵红生,等.基于布谷鸟搜索和模拟退火算法的两电压等级配网重构方法[J].电力系统保护与控制,2020,48(11):84-91. |
| XU X Q, WANG B, ZHAO H S, et al. Reconfiguration of two-voltage distribution network based on cuckoo search and simulated annealing algorithm [J]. Power System Protection and Control, 2020, 48(15): 108-115. | |
| 34 | INBARANI H H, BAGYAMATHI M, AZAR A T. A novel hybrid feature selection method based on rough set and improved harmony search [J]. Neural Computing and Applications, 2015, 26(8): 1859-1880. 10.1007/s00521-015-1840-0 |
| 35 | SUN L, WANG L Y, DING W P, et al. Neighborhood multi- granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems [J]. Knowledge-Based Systems, 2020, 192: Article No.105373. 10.1016/j.knosys.2019.105373 |
| [1] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
| [2] | 黄海翔, 彭双和, 钟子煜. 基于用户系统调用序列的二进制代码识别[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2160-2167. |
| [3] | 高麟, 周宇, 邝得互. 进化双层自适应局部特征选择[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1408-1414. |
| [4] | 雷明珠, 王浩, 贾蓉, 白琳, 潘晓英. 基于特征间关系合成少数类样本的过采样算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1428-1436. |
| [5] | 孙祥杰, 魏强, 王奕森, 杜江. 代码相似性检测技术综述[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1248-1258. |
| [6] | 徐大鹏, 侯新民. 基于网络结构设计的图神经网络特征选择方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 663-670. |
| [7] | 孟圣洁, 于万钧, 陈颖. 最大相关和最大差异的高维数据特征选择算法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 767-771. |
| [8] | 孙林, 刘梦含. 基于自适应布谷鸟优化特征选择的K-means聚类[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 831-841. |
| [9] | 刘晶鑫, 黄雯静, 徐亮胜, 黄冲, 吴建生. 字典学习与样本关联保持结合的无监督特征选择模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3766-3775. |
| [10] | 何添, 沈宗鑫, 黄倩倩, 黄雁勇. 基于自适应学习的多视图无监督特征选择方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2657-2664. |
| [11] | 孙林, 黄金旭, 徐久成. 基于邻域容差互信息和鲸鱼优化算法的非平衡数据特征选择[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1842-1854. |
| [12] | 于振华, 刘争气, 刘颖, 郭城. 基于自适应混合粒子群优化的软件缺陷预测特征选择方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1206-1213. |
| [13] | 孙林, 马天娇, 薛占熬. 基于Fisher score与模糊邻域熵的多标记特征选择算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3779-3789. |
| [14] | 徐精诚, 陈学斌, 董燕灵, 杨佳. 融合特征选择的随机森林DDoS攻击检测[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3497-3503. |
| [15] | 马磊, 罗川, 李天瑞, 陈红梅. 基于模糊粗糙集的无监督动态特征选择算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3121-3128. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||