1 |
HAWKINS D M. Identification of Outliers[M]. Dordrecht: Springer, 1980:1-12.
|
2 |
祁超帅, 何文思, 焦毅, 等. 无人机飞行数据异常检测算法综述[J]. 计算机应用, 2023, 43(6): 1833-1841.
|
|
QI C S, HE W S, JIAO Y, et al. Survey on anomaly detection algorithms for unmanned aerial vehicle flight data[J]. Journal of Computer Applications, 2023, 43(6): 1833-1841.
|
3 |
袁钟, 冯山. 基于邻域值差异度量的离群点检测算法[J]. 计算机应用, 2018, 38(7): 1905-1909.
|
|
YUAN Z, FENG S. Outlier detection algorithm based on neighborhood value difference metric[J]. Journal of Computer Applications, 2018, 38(7): 1905-1909.
|
4 |
李衍志, 范勇, 高琳. 基于形态流的石油钻井水流异常检测[J]. 计算机应用, 2021, 41(6): 1842-1848.
|
|
LI Y Z, FAN Y, GAO L. Anomaly detection of oil drilling water flow based on shape flow[J]. Journal of Computer Applications, 2021, 41(6): 1842-1848.
|
5 |
KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998, 112(1/2/3/4):39-49.
|
6 |
JELONEK J, KRAWIEC K, SLOWIŃSKI R. Rough set reduction of attributes and their domains for neural networks[J]. Computational Intelligence, 1995, 11(2):339-347.
|
7 |
MROZEK A, PLONKA L, KEDZIERA J. The methodology of rough controller synthesis[C]// Proceedings of the IEEE 5th International Conference on Fuzzy Systems. Piscataway: IEEE, 1996, 2: 1135-1139.
|
8 |
DONG L, CHEN D, WANG N, et al. Key energy-consumption feature selection of thermal power systems based on robust attribute reduction with rough sets[J]. Information Sciences, 2020, 532: 61-71.
|
9 |
JIANG F, SUI Y, CAO C. Some issues about outlier detection in rough set theory[J]. Expert Systems with Applications, 2009, 36(3): 4680-4687.
|
10 |
SANGEETHA T, MARY A G. A fuzzy proximity relation approach for outlier detection in the mixed dataset by using rough entropy-based weighted density method[J]. Soft Computing Letters, 2021, 3: 100027.
|
11 |
LIN T Y. Neighborhood systems-A qualitative theory for fuzzy and rough sets[J]. Advances in Machine Intelligence and Soft Computing, 1997, 4: 132-155.
|
12 |
HU Q, YU D, LIU J, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178(18): 3577-3594.
|
13 |
CHEN Y, MIAO D, ZHANG H. Neighborhood outlier detection[J]. Expert Systems with Applications, 2010, 37(12): 8745-8749.
|
14 |
GOH P Y, TAN S C, CHEAH W P. Mining outliers from medical datasets using neighbourhood rough set and data classification with neural network[C]// Emerging Trends in Neuro Engineering and Neural Computation. Singapore: Springer, 2017: 219-228.
|
15 |
YUAN Z, CHEN H, LI T, et al. Fuzzy information entropy-based adaptive approach for hybrid feature outlier detection[J]. Fuzzy Sets and Systems, 2021, 421: 1-28.
|
16 |
YUAN Z, CHEN H, LI T R, et al. Outlier detection based on fuzzy rough granules in mixed attribute data[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8399-8412.
|
17 |
ZHAO H, QIN K. Mixed feature selection in incomplete decision table[J]. Knowledge-Based Systems, 2014, 57: 181-190.
|
18 |
WEI D-K, ZHOU X-Z. Rough set model in incomplete and fuzzy decision information system based on improved-tolerance relation[C]// Proceedings of the 2005 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2005, 1: 278-283.
|
19 |
PATRICIAN P A. Multiple imputation for missing data[J]. Research in Nursing & Health, 2002, 25(1): 76-84.
|
20 |
TAN A, WU W, LI J, et al. Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems[J]. Fuzzy Sets and Systems, 2016, 294: 18-35.
|
21 |
STEFANOWSKI J, TSOUKIÀS A. Incomplete information tables and rough classification[J]. Computational Intelligence, 2001, 17(3): 545-566.
|
22 |
LEUNG Y, LI D. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information Sciences, 2003, 153: 85-106.
|
23 |
PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11: 341-356.
|
24 |
DAI J. Rough set approach to incomplete numerical data[J]. Information Sciences, 2013, 241: 43-57.
|
25 |
HU Q, YU D, XIE Z, et al. Fuzzy probabilistic approximation spaces and their information measures[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(2): 191-201.
|
26 |
LIANG J, CHIN K S, DANG C, et al. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International Journal of General Systems, 2002, 31(4): 331-342.
|
27 |
QIAN Y, LIANG J, YAO Y, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6): 949-970.
|
28 |
TANG J, CHEN Z, FU A W-C, et al. Enhancing effectiveness of outlier detections for low density patterns[C]// Proceedings of the 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2002: 535-548.
|
29 |
ALMARDENY Y, BOUJNAH N, CLEARY F. A novel outlier detection method for multivariate data[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4052-4062.
|
30 |
COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 2000, 42(1): 65-68.
|
31 |
PAPADIMITRIOU S, KITAGAWA H, GIBBONS P B, et al. LOCI: fast outlier detection using the local correlation integral[C]// Proceedings of the 19th International Conference on Data Engineering. Piscataway: IEEE, 2003: 315-326.
|
32 |
ARNING A, AGRAWAL R, RAGHAVAN P. A linear method for deviation detection in large databases[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1996: 164-169.
|
33 |
GOLDSTEIN M, DENGEL A. Histogram-Based Outlier Score (HBOS): a fast unsupervised anomaly detection algorithm[C]// KI-2012: Poster and Demo Track. Kaiserslautern, Germany: DFKI, 2012, 1: 59-63.
|
34 |
BIRGÉ L, ROZENHOLC Y. How many bins should be put in a regular histogram[J]. ESAIM: Probability and Statistics, 2006, 10: 24-45.
|
35 |
BREUNIG M M, H-P KRIEGEL, NG R T, et al. LOF: identifying density-based local outliers[J]. ACM SIGMOD Record, 2000, 29(2): 93-104.
|
36 |
YUAN Z, CHEN H, LUO C, et al. MFGAD: multi-fuzzy granules anomaly detection[J]. Information Fusion, 2023, 95: 17-25.
|
37 |
LI R, CHEN H, LIU S, et al. Incomplete mixed data-driven outlier detection based on local — global neighborhood information[J]. Information Sciences, 2023, 633: 204-225.
|
38 |
ZHAO Y, NASRULLAH Z, LI Z. PyOD: a Python toolbox for scalable outlier detection[J]. Journal of Machine Learning Research, 2019, 20: 1-7.
|