《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (2): 307-317.DOI: 10.11772/j.issn.1001-9081.2020060923
• 人工智能 • 下一篇
收稿日期:
2020-06-30
修回日期:
2020-10-03
发布日期:
2020-12-18
出版日期:
2021-02-10
通讯作者:
杨文忠
作者简介:
孟祥瑞(1996-),女,吉林长春人,硕士研究生,主要研究方向:自然语言处理、情感分析;杨文忠(1971-),男,河南南阳人,副教授,博士,CCF会员,主要研究方向:网络舆情、情报分析、信息安全、无线传感器网络;王婷(1996-),女,新疆阿克苏人,硕士研究生,主要研究方向:自然语言处理、文本情感分析。
基金资助:
MENG Xiangrui1, YANG Wenzhong1, WANG Ting2
Received:
2020-06-30
Revised:
2020-10-03
Online:
2020-12-18
Published:
2021-02-10
Supported by:
摘要: 随着信息化技术的不断提升,各类社交平台上带有倾向性的图文数据量快速增长,图文融合的情感分析受到广泛关注,单一的情感分析方法不再能够满足多模态数据的需求。针对图文情感特征提取与融合的技术难题,首先,列举了目前应用较广的图文情感分析数据集,介绍了文本特征和图片特征的提取方式;然后,重点研究了当前图文特征融合方式,简述了在图文情感分析过程中存在的问题;最后,针对未来情感分析的研究方向进行了总结与展望。为深入了解图文融合技术,采用文献调研方法对图文情感分析的研究进行综述,有助于比较不同融合方法之间的区别,发现更具价值的研究方案。
中图分类号:
孟祥瑞, 杨文忠, 王婷. 基于图文融合的情感分析研究综述[J]. 计算机应用, 2021, 41(2): 307-317.
MENG Xiangrui, YANG Wenzhong, WANG Ting. Survey of sentiment analysis based on image and text fusion[J]. Journal of Computer Applications, 2021, 41(2): 307-317.
[1] 梁军, 柴玉梅, 原慧斌, 等. 基于深度学习的微博情感分析[J]. 中文信息学报,2014,28(5):155-161.(LIANG J,CHAI Y M, YUAN H B,et al. Deep learning for Chinese micro-blog sentiment analysis[J]. Journal of Chinese Information Processing,2014,28(5):155-161.) [2] DOS SANTOS C,GATTI M. Deep convolutional neural networks for sentiment analysis of short texts[C]//Proceedings of the 25th International Conference on Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2014:69-78. [3] 梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展,2017,54(8):1724-1735. (LIANG B,LIU Q,XU J,et al. Aspect-based sentiment analysis based on multi-attention CNN[J]. Journal of Computer Research and Development,2017,54(8):1724-1735.) [4] 陈珂, 梁斌, 柯文德, 等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展,2018,55(5):945-957. (CHEN K, LIANG B, KE W D, et al. Chinese micro-blog sentiment analysis based on multi-channels convolutional neural networks[J]. Journal of Computer Research and Development, 2018,55(5):945-957) [5] PORIA S,CAMBRIA E,GELBUKH A. Deep convolutional neural network textual features and multiple kernel learning for utterancelevel multimodal sentiment analysis[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2015:2539-2544. [6] 蔡国永, 夏彬彬. 基于卷积神经网络的图文融合媒体情感预测[J]. 计算机应用,2016,36(2):428-431,477.(CAI G Y,XIA B B. Multimedia sentiment analysis based on convolutional neural network[J]. Journal of Computer Applications,2016,36(2):428-431,477.) [7] 阳锋, 冯时, 王琳, 等. MICA:一个面向微博数据流的观点挖掘原型系统[J]. 计算机研究与发展,2011,48(S2):405-409. (YANG F,FENG S,WANG L,et al. MICA:an opinion mining prototype system for microblog streams[J]. Journal of Computer Research and Development,2011,48(S2):405-409.) [8] MORENCY L P,MIHALCEA R,DOSHI P. Towards multimodal sentiment analysis:harvesting opinions from the Web[C]//Proceedings of the 13th ACM International Conference on Multimodal Interfaces. New York:ACM,2011:169-176. [9] 申自强. 基于文本和图像的舆情分析方法研究[D]. 镇江:江苏大学,2018:1-56. (SHEN Z Q. Research on public opinion analysis method based on text and image[D]. Zhenjiang:Jiangsu University,2018:1-56.) [10] KATSURAI M,SATOH S. Image sentiment analysis using latent correlations among visual, textual, and sentiment views[C]//Proceedings of the 2016 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE, 2016:2837-2841. [11] 蔡国永, 吕光瑞, 徐智. 基于层次化深度关联融合网络的社交媒体情感分类[J]. 计算机研究与发展,2019,56(6):1312-1324. (CAI G Y, LYU G R, XU Z. A hierarchical deep correlative fusion network for sentiment classification in social media[J]. Journal of Computer Research and Development, 2019,56(6):1312-1324.) [12] BORTH D,JI R,CHEN T,et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//Proceedings of the 21st ACM International Conference on Multimedia. New York:ACM,2013:223-232. [13] JOU B,CHEN T,PAPPAS N,et al. Visual affect around the world:a large-scale multilingual visual sentiment ontology[C]//Proceedings of the 23rd ACM International Conference on Multimedia. New York:ACM,2015:159-168. [14] NIU T,ZHU S,PANG L,et al. Sentiment analysis on multi-view social data[C]//Proceedings of the 2016 International Conference on Multimedia Modeling,LNCS 9517. Cham:Springer,2016:15-27. [15] 刘星. 融合局部语义信息的多模态舆情分析模型[J]. 信息安全研究,2019,5(4):340-345.(LIU X. Multimodal public sentiment analysis modal based on local semantic information[J]. Journal of Information Security Research,2019,5(4):340-345.) [16] TRUONG T Q,LAUW H W. VistaNet:visual aspect attention network for multimodal sentiment analysis[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:305-312. [17] XU N,MAO W,CHEN G. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2019:371-378. [18] PRETTENHOFER P,STEIN B. Cross-language text classification using structural correspondence learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2010:1118-1127. [19] PAVALANATHAN U,EISENSTEIN J. Emoticons vs. Emojis on Twitter:a causal inference approach[EB/OL].[2020-05-10]. https://arxiv.org/pdf/1510.08480.pdf. [20] NAKOV P,RITTER A,ROSENTHAL S,et al. SemEval-2016 Task 4:sentiment analysis in Twitter[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg, PA:Association for Computational Linguistics,2016:1-18. [21] WHISSELL C. Objective analysis of text:Ⅱ. using an emotional compass to describe the emotional tone of situation comedies[J]. Psychological Reports,1998,82(2):643-646. [22] WHISSELL C. Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language[J]. Psychological Reports,2009,105(2):509-521. [23] 李寿山, 李逸薇, 黄居仁, 等. 基于双语信息和标签传播算法的中文情感词典构建方法[J]. 中文信息学报,2013,27(6):75-82.(LI S S,LEE S Y M,HUANG C R,et al. Construction of Chinese sentiment lexicon using bilingual information and label propagation algorithm[J]. Journal of Chinese Information Processing,2013,27(6):75-82.) [24] 王志涛, 於志文, 郭斌, 等. 基于词典和规则集的中文微博情感分析[J]. 计算机工程与应用,2015,51(8):218-225.(WANG Z T,YU Z W,GUO B,et al. Sentiment analysis of Chinese micro blog based on lexicon and rule set[J]. Computer Engineering and Applications,2015,51(8):218-225.) [25] CAI Y,YANG K,HUANG D,et al. A hybrid model for opinion mining based on domain sentiment dictionary[J]. International Journal of Machine Learning and Cybernetics,2019,10(8):2131-2142. [26] 栗雨晴, 礼欣, 韩煦, 等. 基于双语词典的微博多类情感分析方法[J]. 电子学报,2016,44(9):2068-2073.(LI Y Q,LI X, HAN X,et al. A bilingual lexicon-based multi-class semantic orientation analysis for microblogs[J]. Acta Electronica Sinica, 2016,44(9):2068-2073.) [27] XU G,YU Z,YAO H,et al. Chinese text sentiment analysis based on extended sentiment dictionary[J]. IEEE Access,2019, 7:43749-43762. [28] 洪巍, 李敏. 文本情感分析方法研究综述[J]. 计算机工程与科学,2019,41(4):750-757.(HONG W,LI M. A review:text sentiment analysis methods[J]. Computer Engineering and Science,2019,41(4):750-757.) [29] 杨爽, 陈芬. 基于SVM多特征融合的微博情感多级分类研究[J]. 数据分析与知识发现,2017,1(2):73-79.(YANG S, CHEN F. Analyzing sentiments of micro-blog posts based on support vector machine[J]. Data Analysis and Knowledge Discovery,2017,1(2):73-79.) [30] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2002:79-86. [31] KAMAL A,ABULAISH M. Statistical features identification for sentiment analysis using machine learning techniques[C]//Proceedings of the 2013 International Symposium on Computational and Business Intelligence. Piscataway:IEEE, 2013:178-181. [32] RONG W,NIE Y,OUYANG Y,et al. Auto-encoder based bagging architecture for sentiment analysis[J]. Journal of Visual Languages and Computing,2014,25(6):840-849. [33] DAI L,CHEN H,LI X. Improving sentiment classification using feature highlighting and feature bagging[C]//Proceedings of the IEEE 11th International Conference on Data Mining Workshops. Piscataway:IEEE,2011:61-66. [34] GIATSOGLOU M,VOZALIS M G,DIAMANTARAS K,et al. Sentiment analysis leveraging emotions and word embeddings[J]. Expert Systems with Applications,2017,69:214-224. [35] TANG D,WEI F,YANG N,et al. Learning sentiment-specific word embedding for twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2014:1555-1565. [36] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2014:1746-1751. [37] SHIN B,LEE T,CHOI J D,et al. Lexicon integrated CNN models with attention for sentiment analysis[C]//Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Stroudsburg, PA:Association for Computational Linguistics,2017:149-158. [38] LI D,QIAN J. Text sentiment analysis based on long short-term memory[C]//Proceedings of 1st IEEE International Conference on Computer Communication and the Internet. Piscataway:IEEE, 2016:471-475. [39] 罗帆, 王厚峰. 结合RNN和CNN层次化网络的中文文本情感分类[J]. 北京大学学报(自然科学版),2018,54(3):459-465. (LUO F,WANG H F. Chinese text sentiment classification by HRNN-CNN[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2018,54(3):459-465.) [40] 周泳东, 章韵, 曹艳蓉, 等. 基于特征融合分段卷积神经网络的情感分析[J]. 计算机工程与设计,2019,40(10):3009-3013, 3029.(ZHOU Y D,ZHANG Y,CAO Y R,et al. Sentiment analysis based on piecewise convolution neural network combined with features[J]. Computer Engineering and Design,2019,40(10):3009-3013,3029.) [41] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks,2005,18(5/6):602-610. [42] HYUN D, PARK C, YANG M C, et al. Target-aware convolutional neural network for target-level sentiment analysis[J]. Information Sciences,2019,491:166-178. [43] MACHAJDIK J,HANBURY A. Affective image classification using features inspired by psychology and art theory[C]//Proceedings of the 18th ACM International Conference on Multimedia. New York:ACM,2010:83-92. [44] JIA J,WU S,WANG X,et al. Can we understand van Gogh's mood? Learning to infer affects from images in social networks[C]//Proceedings of the 20th ACM International Conference on Multimedia. New York:ACM,2012:857-860. [45] YANULEVSKAYA V,UIJLINGS J,BRUNI E,et al. In the eye of the beholder:employing statistical analysis and eye tracking for analyzing abstract paintings[C]//Proceedings of the 20th ACM International Conference on Multimedia. New York:ACM,2012:349-358. [46] 李娉婷, 石跃祥, 戴皇冠. 基于颜色特征的家居设计图分类[J]. 计算机工程,2011,37(16):224-226,229.(LI P T,SHI Y X,DAI H G. Classification of house-designing image based on color feature[J]. Computer Engineering,2011,37(16):224-226,229.) [47] 王上飞, 陈恩红, 王胜惠, 等. 基于情感模型的感性图像检索[J]. 电路与系统学报,2003,8(6):48-52.(WANG S F,CHEN E H,WANG S H,et al. A Kansei image retrieval based on emotion model[J]. Journal of Circuits and Systems,2003,8(6):48-52.) [48] YANULEVSKAYA V,VAN GEMERT J C,ROTH K,et al. Emotional valence categorization using holistic image features[C]//Proceedings of the 15th IEEE International Conference on Image Processing. Piscataway:IEEE,2008:101-104. [49] LU X,SURYANARAYAN P,ADAMS R B,et al. On shape and the computability of emotions[C]//Proceedings of the 20th ACM International Conference on Multimedia. New York:ACM,2012:229-238. [50] YUAN J,MCDONOUGH S,YOU Q,et al. Sentribute:image sentiment analysis from a mid-level perspective[C]//Proceedings of the 2nd International Workshop on Issues of Sentiment Discovery and Opinion Mining. New York:ACM,2013:No. 10. [51] ZHAO S,YAO H,YANG Y,et al. Affective image retrieval via multi-graph learning[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM,2014:1025-1028. [52] CHEN T,YU F X,CHEN J,et al. Object-based visual sentiment concept analysis and application[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM, 2014:367-376. [53] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-05-10]. https://arxiv.org/pdf/1409.1556.pdf. [54] ARANDJELOVIĆ R,GRONAT P,TORⅡ A,et al. NetVLAD:CNN architecture for weakly supervised place recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(6):1437-1451. [55] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527-1554. [56] KEYVANRAD M A, HOMAYOUNPOUR M M. Deep belief network training improvement using elite samples minimizing free energy[J]. International Journal of Pattern Recognition and Artificial Intelligence,2015,29(5):No. 1551006. [57] ZHOU S, CHEN Q, WANG X. Discriminative deep belief networks for image classification[C]//Proceedings of the 2010 IEEE International Conference on Image Processing. Piscataway:IEEE,2010:1561-1564. [58] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [59] CHEN T,BORTH D,DARRELL T,et al. DeepSentiBank:visual sentiment concept classification with deep convolutional neural networks[EB/OL].[2020-05-10]. https://arxiv.org/pdf/1410.8586.pdf. [60] YOU Q,LUO J,JIN H,et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2015:381-388. [61] MITTAL N,SHARMA D,JOSHI M L,et al. Image sentiment analysis using deep learning[C]//Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway:IEEE,2018:684-687. [62] 曹建芳, 陈俊杰, 李海芳. 基于Adaboost-BP神经网络的图像情感分类方法研究[J]. 山西大学学报(自然科学版),2013,36(3):331-337. (CAO J F, CHEN J J, LI H F. Sentiment classification of image based on Adaboost-BP neural network[J]. Journal of Shanxi University(Natural Science Edition),2013,36(3):331-337.) [63] 蔡国永, 贺歆灏, 储阳阳. 图像整体与局部区域嵌入的视觉情感分析[J]. 计算机应用,2019,39(8):2181-2185.(CAI G Y, HE X H,CHU Y Y. Visual sentiment analysis by combining global and local regions of image[J]. Journal of Computer Applications,2019,39(8):2181-2185.) [64] WANG M,CAO D,LI L,et al. Microblog sentiment analysis based on cross-media bag-of-words model[C]//Proceedings of the 2014 International Conference on Internet Multimedia Computing and Service. New York:ACM,2014:76-80. [65] ZHANG Y, SHANG L, JIA X. Sentiment analysis on microblogging by integrating text and image features[C]//Proceedings of the 2015 Pacific-Asia Conference on Knowledge Discovery and Data Mining,LNCS 9078. Cham:Springer,2015:52-63. [66] CAI G,XIA B. Convolutional neural networks for multimedia sentiment analysis[C]//Proceedings of the 4th CCF International Conference on Natural Language Processing and Chinese Computing,LNCS 9362. Cham:Springer,2015:159-167. [67] NIU T,ZHU S,PANG L,et al. Sentiment analysis on multi-view social data[C]//Proceedings of the 2016 International Conference on Multimedia Modeling,LNCS 9517. Cham:Springer,2016:15-27. [68] BAECCHI C,URICCHIO T,BERTINI M,et al. A multimodal feature learning approach for sentiment analysis of social network multimedia[J]. Multimedia Tools and Applications,2016,75(5):2507-2525. [69] ORTIS A, FARINELLA G M, TORRISI G, et al. Visual sentiment analysis based on objective text description of images[C]//Proceedings of the 2018 International Conference on ContentBased Multimedia Indexing. Piscataway:IEEE,2018:1-6. [70] 金志刚, 胡博宏, 张瑞. 基于深度学习的多维特征微博情感分析[J]. 中南大学学报(自然科学版),2018,49(5):1135-1140. (JIN Z G,HU B H,ZHANG R. Analysis of Weibo sentiment with multi-dimensional features based on deep learning[J]. Journal of Central South University(Science and Technology),2018,49(5):1135-1140.) [71] 缪裕青, 汪俊宏, 刘同来, 等. 图文融合的微博情感分析方法[J]. 计算机工程与设计,2019,40(4):1099-1105.(MIAO Y Q,WANG J H,LIU T L,et al. Joint visual-textual approach for microblog sentiment analysis[J]. Computer Engineering and Design,2019,40(4):1099-1105.) [72] XU N,MAO W,CHEN G. A co-memory network for multimodal sentiment analysis[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2018:929-932. [73] NEMATI S,ROHANI R,BASIRI M E,et al. A hybrid latent space data fusion method for multimodal emotion recognition[J]. IEEE Access,2019,7:172948-172964. [74] ZHANG K,ZHU Y,ZHANG W,et al. Transfer correlation between textual content to images for sentiment analysis[J]. IEEE Access,2020,8:35276-35289. [75] YU Y,LIN H,MENG J,et al. Visual and textual sentiment analysis of a microblog using deep convolutional neural networks[J]. Algorithms,2016,9(2):No. 41. [76] SAINI S,RAO R,VAICHOLE V,et al. Emotion recognition using multimodal approach[C]//Proceedings of the 4th International Conference on Computing Communication Control and Automation. Piscataway:IEEE,2018:1-4. [77] 邓佩, 谭长庚. 基于转移变量的图文融合微博情感分析[J]. 计算机应用研究,2018,35(7):2038-2041.(DENG P,TAN C G. Multimedia sentiment analysis on micro-blog based on transition variable[J]. Application Research of Computers,2018,35(7):2038-2041.) [78] HUANG F,ZHANG X,ZHAO Z,et al. Image-text sentiment analysis via deep multimodal attentive fusion[J]. KnowledgeBased Systems,2019,167:26-37. [79] KUMAR A,SRINIVASAN K,CHENG W H,et al. Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data[J]. Information Processing and Management, 2020, 57(1):No. 102141. [80] CHEN F,GAO Y,CAO D,et al. Multimodal hypergraph learning for microblog sentiment prediction[C]//Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE,2015:1-6. [81] YOU Q, LUO J, JIN H, et al. Cross-modality consistent regression for joint visual-textual sentiment analysis of social multimedia[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining. New York:ACM, 2016:13-22. [82] ZHANG Z,ZOU Y,GAN C. Textual sentiment analysis via three different attention convolutional neural networks and crossmodality consistent regression[J]. Neurocomputing,2018,275:1407-1415. [83] CHEN F,JI R,SU J,et al. Predicting microblog sentiments via weakly supervised multimodal deep learning[J]. IEEE Transactions on Multimedia,2018,20(4):997-1007. [84] JI R, CHEN F, CAO L, et al. Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning[J]. IEEE Transactions on Multimedia,2019,21(4):1062-1075. [85] XU J,HUANG F,ZHANG X,et al. Sentiment analysis of social images via hierarchical deep fusion of content and links[J]. Applied Soft Computing,2019,80:387-399. |
[1] | 毛铭泽, 曹芮浩, 闫春钢. 基于权值多样性的半监督分类算法[J]. 计算机应用, 2021, 41(9): 2473-2480. |
[2] | 郭棉, 张锦友. 移动边缘计算环境中面向机器学习的计算迁移策略[J]. 计算机应用, 2021, 41(9): 2639-2645. |
[3] | 王伟, 赵尔平, 崔志远, 孙浩. 基于HowNet义原和Word2vec词向量表示的多特征融合消歧方法[J]. 计算机应用, 2021, 41(8): 2193-2198. |
[4] | 秦斌斌, 彭良康, 卢向明, 钱江波. 司机分心驾驶检测研究进展[J]. 计算机应用, 2021, 41(8): 2330-2337. |
[5] | 周险兵, 樊小超, 任鸽, 杨勇. 基于多层次语义特征的英文作文自动评分方法[J]. 计算机应用, 2021, 41(8): 2205-2211. |
[6] | 吴丽丹, 薛雨阳, 童同, 杜民, 高钦泉. 基于前景语义信息的图像着色算法[J]. 计算机应用, 2021, 41(7): 2048-2053. |
[7] | 杜炎, 吕良福, 焦一辰. 基于模糊推理的模糊原型网络[J]. 计算机应用, 2021, 41(7): 1885-1890. |
[8] | 章荪, 尹春勇. 基于多任务学习的时序多模态情感分析模型[J]. 计算机应用, 2021, 41(6): 1631-1639. |
[9] | 赖雪梅, 唐宏, 陈虹羽, 李珊珊. 基于注意力机制的特征融合-双向门控循环单元多模态情感分析[J]. 计算机应用, 2021, 41(5): 1268-1274. |
[10] | 卞鹏程, 郑忠龙, 李明禄, 何依然, 王天翔, 张大伟, 陈丽媛. 基于注意力融合网络的视频超分辨率重建[J]. 计算机应用, 2021, 41(4): 1012-1019. |
[11] | 胡屹杉, 秦品乐, 曾建潮, 柴锐, 王丽芳. 基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络[J]. 计算机应用, 2021, 41(3): 891-897. |
[12] | 秦静, 左长青, 汪祖民, 季长清, 王宝凤. 基于堆叠分类器的心电异常监测模型设计[J]. 计算机应用, 2021, 41(3): 887-890. |
[13] | 姜倩玉, 王凤英, 贾立鹏. 基于感知哈希算法和特征融合的恶意代码检测方法[J]. 计算机应用, 2021, 41(3): 780-785. |
[14] | 后云龙, 朱磊, 陈琴, 吕燧栋. 基于高斯差分特征网络的显著目标检测[J]. 计算机应用, 2021, 41(3): 706-713. |
[15] | 刘紫燕, 朱明成, 袁磊, 马珊珊, 陈霖周廷. 基于非局部关注和多重特征融合的视频行人重识别[J]. 计算机应用, 2021, 41(2): 530-536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||