[1] 崔和瑞, 彭旭. 基于ARIMAX模型的夏季短期电力负荷预测[J]. 电力系统保护与控制,2015,43(4):108-114.(CUI H R, PENG X. Summer short-term load forecasting based on ARIMAX model[J]. Power System Protection and Control,2015,43(4):108-114.) [2] DUDEK G. Pattern-based local linear regression models for shortterm load forecasting[J]. Electric Power Systems Research,2016, 130:139-147. [3] TAKEDA H,TAMURA Y,SATO S. Using the ensemble Kalman filter for electricity load forecasting and analysis[J]. Energy, 2016,104:184-198. [4] 吴云, 雷建文, 鲍丽山, 等. 基于改进灰色关联分析与蝙蝠优化神经网络的短期负荷预测[J]. 电力系统自动化,2018,42(20):67-72.(WU Y,LEI J W,BAO L S,et al. Short-term load forecasting based on improved grey relational analysis and neural network optimized by bat algorithm[J]. Automation of Electric Power Systems,2018,42(20):67-72.) [5] 罗育辉, 蔡延光, 戚远航, 等. 基于最大偏差相似性准则的BP神经网络短期电力负荷预测算法[J]. 计算机应用研究,2019,36(11):3269-3273.(LUO Y H,CAI Y G,QI Y H,et al. Short-term power load forecasting algorithm based on maximum deviation similarity criterion BP neural network[J]. Application Research of Computers,2019,36(11):3269-3273.) [6] FAN G,PENG L,HONG W C,et al. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression[J]. Neurocomputing,2016,173(Pt 3):958-970. [7] 任利强, 张立民, 王海鹏, 等. 基于IPSO-GPR的短期负荷区间预测[J]. 计算机工程与设计,2019,40(10):3002-3008.(REN L Q,ZHANG L M,WANG H P,et al. Short-term power load interval forecasting based on improved particle swarm optimization and Gaussian process regression[J]. Computer Engineering and Design,2019,40(10):3002-3008.) [8] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990,14(2):179-211. [9] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [10] ZHENG J,XU C,ZHANG Z,et al. Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[C]//Proceedings of the 51st Annual Conference on Information Sciences and Systems. Piscataway:IEEE,2017:1-6. [11] 李鹏, 何帅, 韩鹏飞, 等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术,2018,42(12):4045-4052.(LI P,HE S,HAN P F,et al. Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricity price[J]. Power System Technology,2018,42(12):4045-4052.) [12] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化,2004,28(17):1-11.(KANG C Q,XIA Q,ZHANG B M. Review of power system load forecasting and its development[J]. Automation of Electric Power Systems, 2004,28(17):1-11.) [13] MA Q,CHEN E,LIN Z,et al. Convolutional multitimescale echo state network[J]. IEEE Transactions on Cybernetics,2019(Early Access):1-13. [14] MA Q,ZHENG J,LI S,et al. Learning representations for time series clustering[C]//Proceedings of the 33rd Annual Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2019:3776-3786. [15] CHANG S,ZHANG Y,HAN W,et al. Dilated recurrent neural networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:77-87. [16] LILLICRAP T P,SANTORO A. Backpropagation through time and the brain[J]. Current Opinion in Neurobiology,2019,55:82-89. [17] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing,2004,14(3):199-222. [18] RASMUSSEN C E. Gaussian processes in machine learning[C]//Proceedings of the 2003 Summer School on Machine Learning, LNCS 3176. Berlin:Springer,2003:63-71. |